
THÈSE DE DOCTORAT DE

l’UNIVERSITÉ PIERRE ET MARIE CURIE

Spécialité

Informatique

École doctorale Informatique, Télécommunications et Électronique (Paris)

Présentée par

Zohir Bouzid

Pour obtenir le grade de

DOCTEUR de l’UNIVERSITÉ PIERRE ET MARIE CURIE

Sujet de la thèse :

Modèles et Algorithmes pour les Systèmes Émergents

soutenue le 21 Juin 2013

devant le jury composé de :

M. Sébastien Tixeuil Directeur de thèse
Mme Maria Potop-Butucaru Encadrant
M. Xavier Urbain Encadrant
M. Michel Raynal Rapporteur
M. Jérémie Chalopin Examinateur
M. Xavier Défago Examinateur
M. Ralf Klasing Examinateur
M. Pierre Sens Examinateur

ACKNOWLEDGEMENTS

I would like to express my gratitude to my PhD supervisor Prof. Sébastien
Tixeuil and to my advisors Prof. Maria Potop-Butucaru and Dr. Xavier Urbain for
supervising my work and guiding my first steps in the field of scientific research. I
also thank them for giving me the freedom to work independently on subjects not
directly related to my PhD.

I would also like to thank my examiners, Prof. Paola Flocchini and Prof. Michel
Raynal for the time they spent examining this thesis and for their encouraging
feedback. I am very grateful to the members of my jury, Dr. Jérémie Chalopin, Dr.
Xavier Défago, Prof. Ralf Klasing, Prof. Michel Raynal and Prof. Pierre Sens for
accepting to evaluate my thesis.

My thanks and gratitude go to my coauthors and collaborators, Dr. Shantanu
Das, Prof. Shlomi Dolev, Dr. Taisuke Izumi, Dr. Anissa Lamani, Dr. Pierre Sutra,
Dr. Corentin Travers and Prof. Koichi Wada.

I especially thank my parents, my brother and my friends Ines, Lamia and
Madjid for their constant help and support.

This work was supported by the Digiteo Île-de-France project PACTOLE

2009-38HD.

ii

CONTENTS

Contents iii

1 Introduction 1

1.1 Research Contributions . 2

2 Background 5

2.1 Model . 5
2.2 Studied Problems . 9

2.2.1 Weber Points . 9
2.2.2 Gathering and Convergence 9
2.2.3 The RoboCast Problem . 12

2.3 Notations . 13

3 Weber Points 15

3.1 Symmetries in Robot Configurations 15
3.1.1 Symmetricity . 18
3.1.2 Regularity . 19
3.1.3 Properties of Weber Points . 21

3.2 Computation of Weber Points in Regular Configurations 23
3.2.1 Preliminaries . 23
3.2.2 Detection of Even Regularity 25
3.2.3 Detection of Odd Regularity 26

3.3 Computation of Weber Points for Quasi-Regular Configurations . . . 30

4 Wait-Free Crash-Resilient Gathering 33

4.1 Configurations . 33
4.2 The Algorithm . 36
4.3 Proof of Correctness . 39

5 Byzantine Convergence 47

iii

5.1 Preliminaries . 48
5.1.1 Cautious Algorithms . 48
5.1.2 Equivalence of Configurations 48
5.1.3 Invariants . 50

5.2 Necessity of Strong Multiplicity Detection 52
5.3 Lower Bound on the Number of Faulty Robots in the ATOM[FS] Model 54
5.4 Lower Bound on the Number of Faulty Robots in the ATOM[B(k)]

Model . 54
5.5 Lower Bound on the Number of Faulty Robots in the ATOM[AS] model 55
5.6 Necessary and Sufficient Conditions for Deterministic Convergence 66

5.6.1 Shrinking algorithms . 66
5.6.2 Cautious algorithms . 68

5.7 Deterministic Convergence in ATOM[FS] Networks 70
5.7.1 Algorithm 5 is Cautious . 70
5.7.2 Algorithm 5 is Shrinking . 71

5.8 Deterministic Convergence in NTOM[B(k)] Networks 71
5.8.1 Algorithm 6 is Cautious . 73
5.8.2 Algorithm 6 is Shrinking . 74

5.9 Deterministic Convergence in NTOM[AS] Networks 80
5.9.1 Algorithm 7 is Cautious . 82
5.9.2 Algorithm 7 is Shrinking . 83

6 RoboCast 91

6.1 Introduction . 91
6.2 RoboCasting the Local Coordinate System: Two Robots Networks . . 91

6.2.1 Line RoboCast . 92
6.2.2 Composing RoboCast . 101
6.2.3 RoboCast of the Local Coordinate System 102

6.3 RoboCasting the Local Coordinate System: n-Robots Networks . . . 104
6.4 Avoinding Collisions . 111
6.5 Applications . 115

6.5.1 Asynchronous Deterministic 2-Gathering 115
6.5.2 Asynchronous Stigmergy . 115

7 Conclusion 117

Bibliography 121

iv

C
H

A
P

T
E

R

1
INTRODUCTION

Distributed systems are playing an increasingly important role in everyday life.
Hence, it becomes necessary to base them on solid theoretical ground. The the-
ory of distributed computing addresses this challenge by defining formal models
of computation, determining which classes of problems are computable in these
models and at what cost in terms of consumed time and resources. Computation
models may vary following several parameters like:

• The communication medium (message passing, shared memory, vision . . .).

• The temporal model (synchronous, partially synchronous, asynchronous
. . .).

• The nature of tolerated failures (crash, malicious . . .).

Often, changing a single parameter of the model greatly impacts its computa-
tional power. Hence, understanding the limiting power of these parameters and
their combined effect is a challenging task. Despite important achievements in
this field, much remains to be done. Our research attempts to contribute to this
goal.

We focus on distributed algorithms for networks of mobile robots which are
mobile entities that communicate only through the vision of their positions. In
order to use low-cost robots, it is important to study what are the minimal capa-
bilities that robots need to have in order to solve important distributed problems.

1

Our approach is purely theoretical, it consists of the formal statement of the
studied distributed problems and of the mathematical proof of the minimal con-
ditions under which they can be solved. The type of questions we try to answer is,
for example, can we solve a given distributed computing problem when the net-
work is asynchronous or when some processes may fail by crashing? and if so, is it
possible to do it when robots have no memory ?

A robot network consists of a finite set of very weak mobile entities that are
allowed to move in the plane. They cannot communicate directly by sending mes-
sages to each others. Instead, their communication is indirect (or spatial): a robot
writes a value to the network by moving toward a certain position, and a robot
reads the state of the network by observing the positions of other robots in terms
of its own local coordinate system. In the standard model, robots are anonymous
and oblivious: they cannot remember past computations, observations or move-
ments. Hence, as with communication, memory is indirect. Since any algorithm
must use a kind of memory, resolving problems in the context of robot networks
is the art of making them “remember without memory” [25].

Robots are also non-oriented (i.e. they share neither a common coordinate
system nor a common length unit). Dealing with the lack of a common notion of
spacial information (which results from the disorientation of robots) is at the heart
of the design of distributed robot algorithms. Impossibility results, lower bounds,
and proofs of correctness are most of the time of geometric nature. Indeed, the
effective solvability of a given problem usually translates into the design of ade-
quate spacial invariants that are preserved by robot movements induced by the
algorithm. These spacial invariants are in some sense a kind of indirect memory
which compensate the lack of persistent memory for robots.

1.1 Research Contributions

In this thesis we present the following contributions:

Weber Points. One of the most famous invariants for robot networks algorithms
is the Weber point. Given a multiset of points P that are not collinear, the
Weber point minimizes the sum of distances over all points of P . It has the
key property of being unique for non-collinear points and of remaining un-
changed under straight movements of any of the points towards or away
from it. Hence, it provides a simple protocol for robots to meet in a single
point: simply move towards the Weber point which remains invariant as a
result of movements of robots towards it. Unfortunately, computing the We-
ber point is known to be difficult and was solved only in special cases such as
regular polygons [2] and lines [14]. A key result of this thesis is a technique to

2

compute the Weber point for many configurations [13, 7] that exhibit some
kind of symmetry (Chapter 3).

Crash-Resilient Gathering. Gathering and Convergence are two fundamental
agreement primitives in robot networks and can serve as a basis in the im-
plementation of a broad class of services. Gathering requires robots to reach
a single point within finite time regardless of their initial positions while
convergence only requires robots to get close to single point. The second
contribution of this thesis is a protocol that solves the gathering problem
when robots may incur any number of permanent crash failures (Chapter 4).
Our protocol [7] relies mainly on our Weber point computation algorithms.

Byzantine-Resilient Convergence. Harder than crash faults, byzantine faults oc-
cur when robots start behaving in completely arbitrary way. Tackling them
is much more challenging. In this thesis [9, 10, 11, 12] we study under
what conditions relating the synchrony of the networks and the number of
tolerated byzantine faults, convergence becomes possible to solve in uni-
dimensional robot networks (Chapter 5).

Non-Oblivious Robot Networks. Many fundamental problems in oblivious robot
networks are impossible to solve without additional assumptions [32]. It is
thus interesting to investigate the power of robots that are endowed with
(possibly bounded) memory. This is the object of the last contribution of
this thesis [8] in which we implement RoboCast, an all-to-all communica-
tion primitive for non-oblivious robots that allow them to send simultane-
ously to each others any binary message (Chapter 6).

The following chapter gives a formal description of the model of computation
and the studied problems. It also compares our results with related works to em-
phasize our contributions.

3

C
H

A
P

T
E

R

2
BACKGROUND

In this chapter, we firstly present the formal model of robot networks that we use in
this thesis (Section 2.1). Then we give a formal description of the studied problems
together with the current state of the art regarding these problems (Section 2.2).
Finally, we conclude with some notations (Section 2.3) that will be further used in
the following chapters.

2.1 Model

Our model is based on the models of Suzuki-Yamashita [34] and Prencipe [33]. The
system consists of a set R of n mobile robots {r1, . . . ,rn} that communicate only
through vision. That is, robots are devoid of any mean of direct communication,
the only way of them to communicate is by observing the positions of their peers (a
“read”) and by moving in the plane (a “write”). Robots do not obstruct the vision
or movement of other robots. Their visibility is unlimited, i.e. they are able to
sense the entire set of robots. Robots are anonymous and homogeneous: they
do not have identifiers, they are indistinguishable by their appearance and they
run the same algorithm. Indices of robots are not known to robots which cannot
employ them in their algorithms, we use them to simplify the presentation.

Execution Model. Each robot executes an infinite sequence of cycles of three
phases Look, Compute and Move. During the Look phase, the robot takes a snap-

5

shot of the environment using its visual sensors. Then it calculates a destination
in the Compute phase. Unless the robot is non-oblivious, the chosen destination
is based only on the snapshot obtained in the previous Look phase. The chosen
destination is based solely on the snapshot it obtained in the preceding phase. Fi-
nally, during the Move phase, the robot moves toward its computed destination. A
robot can be stopped in its Move phase before it reaches its destination. However,
to each robot ri is associated a constantδi such that at every cycle, ri is guaranteed
to move a distance of at least δi towards its destination before it can be stopped.
Define ∆ to be equal tot max(δi : ri ∈R). We assume that the activations of robots
and their movements are controlled by a fictitious entity called the scheduler or
adversary.

Memory. It is generally assumed that robots are oblivious in the sense that they
have no persistent memory of their past observations, computations and move-
ments. Therefore, the actions they perform and the destinations they choose at
every cycle are based entirely on the last observed configuration of the network.
Anything that may have happened in the past is forgotten and every cycle is con-
sidered by robots as the initial cycle of the system. The network memory is im-
plicit, it is generally inferred from the current configuration. This assumption has
two consequences. The first - happy - is that the algorithms designed within this
framework are by definition self-stabilizing. The second - unfortunate - is that the
lack of memory makes it impossible to solve most of the interesting problems. It is
therefore interesting to study robots which are equipped with a memory (poten-
tially bounded) to understand the influence of this parameter in the power of the
model.

Orientation. Robots are non-oriented, that is, each robot has its own local coor-
dinate system with its own origin, axis, and unit of length which may be different
from those of other robots. However, robots can share some aspects of their coor-
dinate systems. When they have the same notion of clockwise orientation or hand-
edness, we say that they share the same chirality. The local coordinate system of
oblivious robots may completely change at the beginning of each cycle, however,
it remains invariable during the cycle. In contrast, the local coordinate system of
a non-oblivious robot is assumed to be fixed during the whole run unless it is ex-
plicitly modified by the corresponding robot as a result of a computation. We say
in this case that robots remember their own coordinate systems.

6

Multiplicity Detection. Each robot is modeled as a point without volume on a
geometric plane. Thus multiple robots may lie in the same location forming a
multiplicity point.

When robots are able to detect multiplicity points during their Look phase, we
say that they are endowed with the multiplicity detection capability. We consider
the following three variants of this feature:

• Robots can be endowed with strong multiplicity detectors, denoted by ♦M ,
that allow them to detect the exact number of robots that may simultane-
ously occupy the same location.

• Weak multiplicity detectors, referred to as ?M , allow robots to detect
whether there is one or more robots that are located in some position.

• For ease of presentation, when robots do not have any multiplicity detection
capability, we say that they are endowed with a null multiplicity detector,
denoted hereafter by ∅M .

Atomicity. The scheduler can be either atomic or non-atomic. An atomic
scheduler, denoted ATOM, activates at each cycle a subset of robots. Upon their ac-
tivation, the selected robots execute a complete Look-Compute-Move cycle syn-
chronously and in a lock-step manner. Hence, the robots that are activated at the
same cycle compute their destinations based on the same picture of the environ-
ment.

Under a non-atomic scheduler, denoted NTOM, the phases of the different
robots are independent and are not started necessarily at the same time. More-
over, the duration of the different phases are not constant. Each phase of each
robot can take an arbitrary but finite time. It is possible that for instance a robot
executes its Look phase while another robot performs its Move phase, or that a
robot executes its Compute phase while its view (obtained during the Look phase)
is already outdated. Therefore, a robot can compute its destination based on an
outdated information about its environment. Indeed, between the time it fin-
ishes its Look phase and the end of its Compute phase, the other robots may have
moved and been activated several times.

Observe that ATOM ⊂ NTOM. That is, ATOM schedules are a strict subset of the
schedules allowed by NTOM. Hence, any algorithm designed for the ATOM model
works also correctly under NTOM. On the other hand, impossibility results that are
proven in the ATOM model still hold in the NTOM model.

Synchrony. Complementary to the atomicity of robots action is the amount of
synchrony of the scheduler. All the schedulers in this thesis are fair i.e. each robot

7

is activated infinitely often in any infinite execution. We consider the following
synchrony properties:

• A fully synchronous scheduler, denoted FS, operates all robots in a lock-
step manner forever (hence, it is atomic by definition).

• A k-bounded scheduler, denoted B(k), guarantees that between any two
successive activations of the same robot, no other robot can be activated
more than k times. Hence, it preserves a ratio of k between the most often
activated robot and the least often activated robot.

• A fully asynchronous scheduler, denoted AS, does not give any guarantee
about the activation of robots (apart from fairness).

Observe that FS⊂ B(k) ⊂ AS.
To combine atomicity and synchrony assumptions of schedulers, we refer

to them using the following notation X (Y) where X ∈ {ATOM,NTOM} and Y ∈

{FS,B(k),AS}. When the reference to Y is omitted, the scheduler is AS by default.
Our notation is not standard, but we found it easier to present the results of

this thesis using a notation that decorrelates between the degrees of atomicity
and synchrony of the considered scheduler. In the literature, ATOM(FS) is called
FSYNCH [26], ATOM(AS) is referred to as either SYM [34] or SSYNCH [26] and
NTOM(AS) is traditionally called CORDA [33] or ASYNCH [26].

Faults. The faults that we investigate fall in two categories:

• Crash faults. Here, a faulty robot stops executing its cycle forever but it re-
mains visible to other robots.

• Byzantine faults. A faulty robot may exhibit arbitrary and unpredictable
behavior and movement. When analyzing the correctness of byzantine-
resilient algorithms, we assume that the byzantine robots are under the con-
trol of the adversary that does everything it can in order to deceive correct
robots and make the algorithm fail. Of course, the byzantine fault model
encompasses the crash fault model, and is thus harder to address.

The maximum number of the robots that can fail during an execution is indi-
cated by the parameter f ∈ [0,n]. A robot that never incur a fault is said correct.
The number of correct robots is denoted by m with n = m + f . To simplify the
proofs, we assume that the indices of correct robots run from 1 to m. A protocol
that can handle up to f = n −1 faults is called wait-free.

8

2.2 Studied Problems

This section presents the formal definition of the studied problems followed by a
description of related works for each of them.

2.2.1 Weber Points

Definition 1. The Weber points of a multiset of points P, denoted WP(P), are those

points that minimize the sum of distances with points of P. Formally,

WP(P) = argmin
x∈R2

n∑

i=1
|x, pi |

The Weber point has the key property of remaining unchanged under straight
movements of any of the points towards or away from it. Observe that this is not
true for the center of gravity of robots which changes as a result of the movement
of any robot towards it. Hence, Weber points can be used as a geometric invariant
in robots networks algorithms. For example, it is simple to devise a robot protocol
that solves gathering: all robots simply move towards the Weber point. Unfortu-
nately, it has been shown [6] that the Weber point is in general not solvable by a
formula involving only the usual algebraic operations (addition, subtraction, mul-
tiplication, division) and radicals (square roots, cube roots, . . .). The problem of
finding Weber points has been solved up to now for only a few specific configura-
tion of points (e.g. linear [14] or biangular [2] configurations). A key contribution
of our thesis (Chapter 3) is to present techniques for computing the Weber point
of a large class of configurations that exhibit some kind of symmetry.

2.2.2 Gathering and Convergence

Definition 2. The gathering problem requires correct robots to reach the same,

but unknown beforehand, location within finite time regardless of their initial po-

sitions. In the weaker convergence problem, correct robots are only required to

asymptotically approach the same position and not necessarily join it.

Formally, given any initial configuration, convergence requires the existence a

point c such that for every ǫ> 0, there exists a time τǫ such that ∀τ> τǫ, all correct

robots are within a distance of at most ǫ of c at τ.

Note that the definition requires the gathering or convergence property only
from correct robots. It is impossible to obtain the convergence of all faulty robots
since crashed robots stop moving and byzantine robots may exhibit arbitrary be-
havior and never join the position of correct robots.

9

Reference Computation Model Time

[34] ATOM Unbounded
Chapter 6, Section 6.5.1 NTOM Bounded

Table 2.1: Gathering of Two Non-Oblivious Robots

The gathering problem was introduced in a seminal paper of Suzuki and Ya-
mashita [34] where it was solved in the ATOM model provided that robots are en-
dowed with weak multiplicity detectors ?M . Later, Prencipe [32] proved that this
multiplicity detection capability is necessary to solve the gathering problem in
ATOM (and thus in NTOM also). Cieliebak et al. [15] proposed a gathering solution
for the NTOM model. Deterministic convergence was addressed by Cohen and Pe-
leg [16, 17], where algorithms based on convergence to the center of gravity of the
system are presented.

Robots with limited visibility were first studied in [4] where the authors ad-
dressed the convergence problem in ATOM model. The subsequent work of Floc-
chini et al. [27] proposed a gathering protocol for oblivious robots with limited vis-
ibility in the NTOMmodel where robots share the knowledge of a common direction
given by a compass. Recently, Katreniak [30] solved the problem in NTOM without
the common direction assumption but only for 1-bounded scheduler. In [19], the
authors introduced a new model for robots with volume that are represented by
two-dimensional figures rather than points and which block both the motion and
visibility of other robots. In this model, they provided a gathering algorithm for
three and for four robots. Robots with inaccurate sensors and movements were
addressed in [18] and [28].

Gathering of Two Non-oblivious robots Deterministic gathering of two state-
less robots has been proved impossible when robots have no common orienta-
tion [34]. In [34], the authors also propose a non-oblivious algorithm for deter-
ministic gathering in the ATOM model. In Chapter 6, we extend this result to the
NTOM model, using bounded memory and a limited number of movements and
cycles (refer to Figure 2.1).

Crash-Resilient Gathering All known deterministic solutions to gathering ex-
cept the two works [1, 23] require robots to be fault-free and initially located on
distinct positions. Agmon and Peleg [1] solve gathering with at most one halt-
ing fault assuming that no two robots are located on the same position initially.
Dieudonné and Petit [23] present a fault-free gathering algorithm (no halting fault)
starting from any initial configuration of robots provided that their number is odd.

10

Reference Model Chirality Multiplicity Halting Initial Configurations

Detection Faults

[1] ATOM No Weak (binary) f ≤ 1 No multiplicity points
[23] ATOM No Strong f = 0 n is odd

Chapter 4 ATOM Yes Strong f < n not bivalent

Table 2.2: Crash resilience bounds for gathering.

Reference Problem Lower Bound Upper Bound

[1] Gathering (2 D) - n > 3 f (ATOM[FS])
Chapter 5 Gathering (1 D) n > 2 f n > 2 f (ATOM[FS]) 1

Convergence (1 D) n > 3 f (ATOM[B(k)]) n > 3 f (NTOM[B(k)])
Convergence (1 D) n > 5 f (ATOM[AS]) 2 n > 5 f (NTOM[AS])

Table 2.3: Byzantine resilience bounds for convergence/gathering.

Moreover, [23] show that deterministic gathering is impossible if the robots are
equally distributed in two points on the plane (the so-called bivalent configura-
tion). In Chapter 4, we investigate the possibility of handling more than one halt-
ing fault in robot networks in a deterministic setting. In more details, we we show
how to solve gathering, when any number of robots may crash at any time during
the algorithm, assuming that robots share the same chirality (that is, they agree
about their handedness). We also assume, as in [23], a strong multiplicity detec-
tion mechanism. Our algorithm achieves gathering starting from any configura-
tion (except the bivalent configuration where deterministic gathering is impossi-
ble). Our results are summarized in table 2.2.

Byzantine-Resilient Convergence Deterministic byzantine-resilient gathering
is addressed in [1] where the authors propose an algorithm for the ATOM model
with fully synchronous scheduling that tolerates up to f byzantine faults, when
the total number of robots is (strictly) greater than 3 f . Probabilistic byzantine-
resilient gathering was addressed by [21] . In this thesis, we study deterministic

gathering and convergence in byzantine-prone environments when robots move
in a uni-dimensional space. We prove several tight bounds that relate the re-
silience of the system to its degree of synchrony. Our results are presented in Table
2.3 where they are compared with [1]. More details can be found in Chapter 5.

11

Reference Model Time Complexity

[34, 35] Non-oblivious ATOM Unbounded
Chapter 6 Non-oblivious NTOM Bounded

Table 2.4: State of the Art for RoboCast.

2.2.3 The RoboCast Problem

In [34, 35], Suzuki and Yamashita present an algorithm in ATOM that allows a swarm
of robots endowed with memory to use their motion as a medium to exchange
their local coordinate systems. Once robots know the coordinate systems of each
others, they can use their positions as a way to encode (and thus transmit) any
binary information [34, 35, 22]. This has an important consequence: using this
protocol as a building block, robots can emulate any (fault-free anonymous) algo-
rithm that runs in the message passing model in which processes communicate
through sending binary messages to each others. This means that in some sense
non-oblivious ATOM is stronger than the message passing model. But is this true
also for non-oblivious NTOM ?

In this thesis we give a positive answer to this question. We formally spec-
ify and implement an all-to-all communication primitive, called RoboCast (see
Definition 3 below), that allows non-oblivious robots to exchange various infor-
mation (e.g. their local coordinate axes, unity of measure, rendez-vous points, or
binary information) using only motion in a two dimensional space. Contrary to
the previous solution of [34, 35], our algorithm works in the fully asynchronous

NTOM model and uses a bounded number of movements (see Table 2.4). Then, we
use the RoboCast primitive to solve deterministic gathering for two robots in non-
oblivious NTOM.

Definition 3. The RoboCast communication abstraction provides a set of robots lo-

cated at arbitrary positions in a two-dimensional space the possibility to broadcast

their local information to each other. The RoboCast abstraction offers robots two

communication primitives:

• RoboCast(m): sends message m to all other robots.

• Deliver(m): delivers message m to the local robot.

The message m may consists in the local coordinate system, the robot chirality,

the unit of measure, or any binary coded information.

12

Consider a run at which each robot ri in the system invokes RoboCast(mi) at
some time τi for some message mi . Let τ be equal to max{t1, . . . ,τn}. Any protocol
solving the RoboCast Problem has to satisfy the following two properties:

• Validity: For each message mi , there exists a time τ′
i
> t after which every

robot in the system has performed Deliver(mi).

• Termination: There exists a time τT ≥ max{τ′1, . . . ,τ′n} after which no
robot performs a movement that causally depends on the invocations of
RoboCast(mi).

2.3 Notations

A multiset or a bag S is a generalization of a set where an element can have more
than one occurrence. The number of occurrences of an element a in S is referred
as its multiplicity and is denoted by mulS(a) or simply mul(a). The total num-
ber of elements of a multiset, including their repeated occurrences, is referred as
the cardinality and is denoted by |S|. min(S)(resp. max(S)) is the smallest (resp.
largest) element of S. If S is nonempty, range(S) denotes the set [min(S),max(S)]
and diam(S) (diameter of S) denotes max(S)−min(S).

Denote by T the set of time instants. We assume that it is equal to the set of
positive natural numbers.

Given robots ri ,r j ∈ R and a time τ ∈ T, the last position of r j observed by ri

at τ (or before) is denoted by P i
j
(τ). the last configuration observed by ri at τ is

given by the multiset P i (τ) = {P i
1(τ), . . . ,P i

n(τ)}. The subset of positions of correct
robots is referred as U i (τ) = {U i

1(τ), ...,U i
m(τ)} where U i

j
(τ) = P i

j
(τ) and U i (τ) ⊆

P i (τ) (remember that m denotes the number of correct robots). P i (τ) and U i (τ)
are relative to the observing robot, that is, they are expressed using the (last) local
coordinate system of ri . We shall drop the superscript i when it is obvious from
context.

Let P be the set of all possible configurations of n robots. Formally, P = R
2n

where R is the set of real numbers. A configuration is said to be linear whenever
all robots lie on the same line. Given any robot r , mul(r) denotes the multiplicity

of the location occupied by r , that is, the number of robots collocated with r (in-
cluding r). Given P ∈ P a configuration, we denote by L(P) the set of positions in
P removing multiplicities (i.e. each point in L(P) contains at least one robot). Let
SEC(P) and CH(P) denote respectively the smallest enclosing circle and the convex
hull of the point set P . Given a point c ∈ R

2, let Pc denote the configuration that
results from removing all the points that are equal to c from P .

13

Given two distinct points u and v of the plane (R2), let line(u, v,) denote the
straight line passing through these points and let (u, v) (resp. [u, v]) denote the
open (resp. closed) interval containing all points in this line that lie between u and
v . The half-line starting at point u (but excluding point u) and passing through v

is denoted by HF (u, v). Formally,

HF (u, v) = {p ∈ l i ne(u, v), p 6= u : v ∈ [u, p]∨p ∈ [u, v]}

With reference to some point c ∈ R
2 \ {u, v}, the clockwise angle between seg-

ments [c,u] and [c, v] is denoted by ∢(u,c, v,!) (or simply ∢(u,c, v)). The anti-
clockwise angle ∢(u,c, v,") is defined similarly. The Euclidean distance between
u and v is denoted by |u, v |. The center of any circle G is denoted by center(G).

14

C
H

A
P

T
E

R

3
WEBER POINTS

A key result of this chapter is a technique to compute the Weber points of newly
defined classes of configurations that exhibit some kind of symmetry, referred to
in the sequel as symmetric, regular and quasi-regular configurations. The formal
definitions of these notions and their properties are given in Section 3.1. Then, we
present the algorithms for computing the Weber points for such configurations in
Sections 3.2 and 3.3.

Non-linear configurations are known to have a unique Weber point while lin-
ear configurations may have infinitely many Weber points. The Weber points of
a linear configuration P are points in the interval [mi n(Med(P)),max(Med(P))],
where Med(P) denotes the set of median points. If a linear configuration P has a
single median, then this point is the unique Weber point WP(P) (see Figure 3.1).

In this chapter, we assume that all configurations are non-linear.

3.1 Symmetries in Robot Configurations

Configurations may exhibit several kinds of symmetry. In this section, we firstly
consider a specific form of symmetry called rotational symmetry which we define
precisely and which we show how to quantify. This notion is based on the concept
of views [34], as described below. We introduce then weaker forms of symmetry
called regularity and quasi-regularity and we explain how all these notions relate
to Weber points.

15

Figure 3.1: Weber points for linear configurations with an (a) odd and (b) even

number of points respectively. In configuration (a), the Weber point is unique and
consists of the point C . In configuration (b), the set of Weber points is the line
segment [B ,D].

Definition 4 (Views). Let P be a configuration of robots. Given a position u ∈ L(P),

define the view of u, denoted V (u), as the expression of P in the polar coordinate

system the center of which is u and whose (1,0) point is equal to:

• center(SEC(P)) if this point is distinct from u.

• Otherwise, we take any point in L(P) that is distinct from u and which maxi-

mizes V (x) according to the lexical order on positions.

Note that in the definition above, the point (1,0) is not uniquely defined, how-
ever the view of any point u ∈ L(P) is uniquely defined. Based on the definition
of views, we can define an equivalence relation ∽ on the set of robot locations, as
follows: ∀u,u′ ∈ L(P), (u ∽ u′) ⇔ (V (u) = V (u′)). The corresponding equivalence
class for u is denoted by [u].

The following property was observed by Suzuki and Yamashita ([34], Lemma
4.2.) for a different definition of views but it still holds when considering our def-
inition; the argument remains the same. It says that the points of any configura-

16

Figure 3.2: A 13-points configuration. The points not lying on the center
of the SEC can be partitioned into three equivalence classes of cardinality 4:
{A1, A2, A3, A4}, {B1,B2,B3,B4} and {C1,C2,C3,C4}.

tion (excluding those lying in the center of the SEC if any) can be partitioned into
equivalence classes of the same cardinality (see Figure).

Lemma 3.1.1. Let P be a configuration and let c = center(SEC(P)). For every

u ∈ L(Pc) with |[u]| = k > 1, [u] is a regular k-gon with center c and the corners

of which have the same multiplicity.

The following lemma follows from the definition of views:

Lemma 3.1.2. Let P be a configuration and let c = center(SEC(P)). The following

property holds:

∃k > 0,∀u ∈ L(Pc) : |[u]| = k.

Proof. Fix a configuration P . We prove the following equivalent claim.

17

∀u, w ∈ L(Pc) : |[w]| ≥ |[u]|.

Fix u, w ∈ L(Pc) and let |[u]| = k. We need to prove that |[w]| ≥ k. If k = 1
then the claim holds trivially. So let us assume in the following that k > 1. Let
[u] = {u0, . . . ,uk−1}. Assume that indices define a clockwise polar ordering of the
positions around c. There exists i ∈ [0,k − 1] such that w ∈ ∢(ui ,c,u(i+1) mod k).
Observe that both ui and u(i+1) mod k belong to the same equivalence class [u],
hence V (ui) = V (u(i+1) mod k). This means that there is a rotational symmetry of
angle ∢(ui ,c,u(i+1) mod k) around c. Hence, there exists a position w ′ ∈ L(Pc), w ′ 6=

w such that w ′
∽ w and w ′ ∈ ∢(u(i+1) mod k ,c,u(i+2) mod k). By repeating this ar-

gument, we find k positions that are equivalent to w (including itself). More pre-
cisely, for every i ∈ [0,k −1], there exists a position w ′ ∈ L(Pc), w ′ 6= w with w ′

∽ w

and w ′ ∈ ∢(ui ,c,u(i+1) mod k). Consequently, |[w]| ≥ k = |[u]|. This proves the
lemma.

3.1.1 Symmetricity

The following definition formalizes the notion of rotational symmetricity.

Definition 5 (Rotational Symmetricity). The symmetricity of a configuration P,

denoted sym(P), is the cardinality of the biggest equivalence class defined by ∽ on

L(P). That is, sym(P) = max(|[u]| : u ∈ L(P)).

If sym(P) = k > 1, we say that P is k-symmetric (or symmetric).

The center of symmetricity of P, denoted C S(P), is the point center(SEC(P)).

The following property follows from the definition of symmetricity.

Lemma 3.1.3. For every configuration P, sym(P) = max(1,sym(Pc)).

Proof. Fix a configuration P and let c = center(SEC(P)). If there exists no robot
located at c, then P = Pc and the claim holds trivially. Hence, we assume in the
following that some robot of P is located at u. That is, L(P) = {c}∪L(Pc). Thus,
sym(P) = max(|[u]| : u ∈ {c}∪ L(Pc)) = max({|c|}∪ {|[u]| : u ∈ L(Pc)}). But the
vision of c is unique, hence |[c]| = 1. Moreover, sym(Pc) = max{|[u]| | u ∈ L(Pc)}.
Consequently sym(Pc) = max(1,sym(Pc)).

Now we can adapt a result stated in [20] to our definition of views and sym-
metricity:

Lemma 3.1.4. Let P be a configuration such that sym(P) = k > 1 and let c =

center(SEC(P)). For every u ∈ L(Pc), it holds that [u] is a regular convex k-gon with

center c and the corners of which have the same multiplicity.

18

Proof. Since sym(P) = k > 1, it follows from Lemma 3.1.3 that sym(Pc) = k. This
means that there exists an equivalence class in Pc / ∽ with cardinality k. But we
have seen in Lemma 3.1.2 that all the elements in Pc /∽ have the same cardinality.
That is, for all u ∈ L(Pc), |[u]| = k. Moreover, according to Lemma 3.1.1, the points
of [u] form a regular k-gon with center c and the corners of which have the same
multiplicity.

3.1.2 Regularity

We now define some weaker forms of symmetry called regularity and quasi-

regularity. If we consider any circle G that encloses the points in a configuration
P , we may order the points by sweeping the circle G in a clockwise direction and
ordering points on the same radius w.r.t. their distance from the center. This idea
leads to the following definitions (extending the concepts in [2, 29]).

Definition 6. Let P = {p1, . . . , pn} be a configuration and let c ∈R
2.

• [Successor] The clockwise successor of pi ∈ P around c, denoted by S(pi ,c,!)
(or simply S(pi ,c)) is equal to the point p j ∈ P defined as follows:

– Let X = {pk ∈ P | (pk = pi)∧ (k < i)}. If X 6= ;, then

p j = argmax
pk∈X

k

– Otherwise, let Y = {pk ∈ P ∩ (c, pi)}. If Y 6= ;, then

p j = argmax
pk∈Y

(|c, pk |,k)

– Otherwise, let Z = {pk ∈ P | (Øp ∈ P : 0 < ∢(pi ,c, p,!) <

∢(pi ,c, pk ,!)}. In this case,

p j = argmax
pk∈Z

(|c, pk |,k)

• [k-th Successor] The k-th successor of pi around c, denoted Sk (pi ,c) is de-

fined recursively as follows: S1(pi ,c) = S(pi ,c); and if k > 1, Sk (pi ,c) =

S(Sk−1(pi ,c)).

The k-th anti-clockwise successor of pi around c, denoted S(pi ,c,") is defined

similarly.

19

The string of angles of P around a point c started in pi , denoted by SAP (pi ,c)
is the string α1 . . .αm such that m = n −mul(c) and αi =∢(Si−1(pi),c,Si (pi)).

The size of SAP (pi ,c), denoted by |SAP (pi ,c)| is equal to m.
A string SA is k-periodic if it can be written as SA = xk where 1 ≤ k ≤ |SA|. The

greatest k for which SA is k-periodic is called the periodicity of SA and is denoted
by per (SA).

Observe that the periodicity of a string of angles does not depend on the pro-
cess in which it is started. That is, when it comes to periodicity, the important
information about a string of angles is only its center c. Hence, in the following we
refer to it by writing SAP (c) or simply SA(c) when the related configuration P can
be understood from context.

The following theorem shows that strings of angles are computable in
O(n logn) time.

Theorem 3.1.1. Given is a configuration P with |L(P)| > 1 and a point c ∈R
2, there

exists an algorithm with running time O(n logn) that computes SA(c).

Proof. Fix some p ∈ P with p 6= c. We show how to compute SA(p,c). We use an
array T [n] of n −mul(c) cells. As a first step, we compute for each pi ∈ P with
pi 6= c the angle ∢(p,c, pi ,!) and put the result in T [i]. Note that this step takes
O(n) time. Then we sort T in increasing order (O(n logn) steps). SA(p,c) is the
string α1 . . .αn−mul(c) such that ∀i ∈ [1,n − mul(c) − 1] : αi = T [i + 1] − T [i] and
αn−mul(c) = 2π−T [n −mul(c)]. The whole algorithm runs in O(n logn).

Definition 7 (Regularity). A configuration P of n points is regular if there exists a

point c ∈ R
2 such that the string of angles of P around c is periodic. That is, ∃k > 1

such that per (SA(c)) = k > 1.

The regularity of P, denoted reg(P), is equal to k. Otherwise reg(P) = 1.

The point c is called the center of regularity and is denoted by C R(P).

Observe that a configuration that is symmetric is also regular. Precisely,
(sym(P) > 1) ⇒ (reg(P) = xsym(P) with x ≥ 1).

Definition 8 (Quasi-Regularity). A configuration P of n points is quasi-regular if

and only if there exist (1) a point c ∈ R
2 and (2) a regular configuration P ′ with

center of regularity c which can be obtained from P by moving only points located

at c if any. Formally, P is quasi-regular with center c ∈R
2 if and only if ∃P ′ ∈P such

that reg(P ′) > 1, C R(P ′) = c and ∀p ∈ P ′ \ P : p = c. In this case, the quasi-regularity

of P, denoted qreg(P) is equal to reg(P ′).

Its center of quasi-regularity, denoted CQR(P), is equal to c.

If P is not quasi-regular then qreg(P) = 1.

20

Note that a configuration that is regular is also quasi-regular (with P ′ = P).
Precisely, (reg(P) > 1) ⇒ (qreg(P) = reg(P)).

The notions of symmetricity, regularity and quasi-regularity are illustrated in
Figure 3.3.

Figure 3.3: Configurations that are (from the left to the right) (i) Symmetric with
sym(P) = 4, (ii) Regular with reg(P) = 4, (iii) Quasi-Regular with qreg(P) = 4. The
number in parentheses represent the multiplicity of a point.

3.1.3 Properties of Weber Points

The Weber point of a non-linear configuration has the remarkable property
or remaining invariant under movement of some of the points towards it (see
Lemma 3.1.5). Moreover, we can show that for every configuration P that has
a unique Weber point and that is quasi-regular, the center of quasi-regularity
CQR(P) coincides with the unique Weber point WP(P) (see Lemma 3.1.8) and this
point can be computed.

Lemma 3.1.5. Let P = {p1, . . . , pn} and P ′ = {p ′
1, . . . , p ′

n} two configurations. Let X =

{x ∈ WP(P) | ∀i ∈ [1,n] : p ′
i
∈ [pi , x]}. If X 6= ; then WP(P ′) = X .

Proof. Let Y = {x ∈R
2 | ∀i ∈ [1,n] : p ′

i
∈ [pi , x]}. Note that X = Y ∩WP(P).

Observe that:

n∑

i=1
|x, p ′

i | =
n∑

i=1
|x, pi |+

n∑

i=1
(|x, p ′

i |− |x, pi |)

By definition, the points of WP(P) are those points x that minimize
∑n

i=1 |x, pi |.
Moreover, the points of Y are those that minimize

∑n
i=1(|x, p ′

i
|−|x, pi |). Hence, the

points of X = Y ∩WP(P) minimize the two sums and minimize their sum also. It
follows that the points that minimize

∑n
i=1 |x, p ′

i
| are those in X . Thus, WP(P ′) =

X .

21

Corollary 3.1.1. If P is a configuration with a unique Weber point c and if P ′ is a

configuration that is obtained from P by moving robots towards c, then the Weber

point of P ′ is also unique and is equal to c.

The following lemma states that the center of symmetricity of any configura-
tion P if any, is also its Weber point. The same claim was proved by Anderegg et
al. [3] in the cases when sym(P) = n (equiangular) and sym(P) = n/2 (biangular).
Our proof uses the same argument as theirs.

Lemma 3.1.6. For every non-linear configuration P that is symmetric,

WP(P) =C S(P)

Proof. Fix P a non-linear configuration, and assume sym(P) = k > 1. Let c =

C S(P) = center(SEC(P)). We have to prove that WP(P) = c.
Assume for the sake of contradiction that WP(P) 6= c. This implies the existence

of a point c ′ 6= c with c ′ ∈ WP(P).
Let G be the regular k-gon with center c and and c ′ a vertex of G . Since c ′ ∈

WP(P), it follows by symmetry that all the k points of G belong also to WP(P). But
as P is non-linear, WP(P) is unique. Contradiction.

Lemma 3.1.7. For every non-linear configuration P that is regular,

WP(P) =C R(P)

Proof. Let P a non-linear configuration such that reg(P) = k > 1 and let
c =C R(P) = center(SEC(P)). We have to prove that WP(P) = c. Let P ′ be a con-
figuration obtained from P as follows: For each point p ∈ P not located at c, move
p towards the point that is at the intersection of HF (c, p) and SEC(P). Clearly,
the obtained configuration P ′ is symmetric with center of symmetricity c and
sym(P ′) = reg(P). According to Lemma 3.1.6, WP(P ′) = c.

Note that P can be obtained from P ′ by moving points in P ′ towards c. Hence
by applying Corollary 3.1.1, we conclude that WP(P) = c.

In the following Lemma we show that the center of quasi-regularity of a con-
figuration is also its Weber point.

Lemma 3.1.8. For every non-linear configuration P that is quasi-regular,

WP(P) =CQR(P)

22

Proof. Let P a non-linear configuration with qreg(P) = k > 1 and c =CQR(P). We
have to prove that c = WP(P).

By definition of quasi-regularity, there exists a regular configuration P ′ whose
center of regularity is c and which can be obtained from P by moving only points
located at c if any. Seen in the reverse sense, P can obtained from P ′ under straight
movement of points towards c. According to Lemma 3.1.7, WP(P ′) = c. Hence, by
Corollary 3.1.1, WP(P) = c.

3.2 Computation of Weber Points in Regular

Configurations

In this section we show how to identify geometric configurations that are regular
and to compute their center of regularity. We present two algorithms that detects
whether a configuration P of n points given in input is k-regular for some k > 1,
and if so, they output its center of regularity. The first one detects the regularity
only if m is even, it is very simple and runs in O(n logn) time. The second one can
detect any regular configuration, provided that m ≥ 3. It is a little more involved
and runs in O(n4 logn) time.

3.2.1 Preliminaries

In this section, we state some technical properties about regular configurations
which we use later in our proofs.

Lemma 3.2.1. Let P be a regular configuration with reg(P) = k > 1 and c =C R(P).

Let n′ = |Pc | = n −mul(c). The following property holds:

∀u ∈ Pc :∢(u,c,S
n′

k (u,c)) =
2π

k

Proof. Fix u ∈ Pc and let S = SA(u,c). Note that |S| = n −mul (c) = n′. Assume that
S =α1 . . .αn′ . Since reg(P) = k, it holds that S is k-periodic. Hence, k is a divisor of
n′. Let x denote n′/k.

Observe that:
α1 +α2 + . . .+αn′ = 2π

Since n′ = kx, the above sum can be rewritten as follows:

(α1 + . . .+αx)+ (αx+1 + . . .+α2x)+ . . .+ (α(k−1)x+1 + . . .+αkx) = 2π

The fact that S is k-periodic means that ∀i ∈ [1,n′] : αi = α(i+x)mod(n′+1). This
implies:

k(α1 + . . .+αx) = 2π

23

Thus:

(α1 + . . .+αx) =
2π

k

But ∢(u,c,Sx (u)) = (α1 + . . .+αx). Hence ∢(u,c,Sx (u)) = 2π
k

.

The following lemma is a generalization of Lemma 3.2.1.

Lemma 3.2.2. Let P be a regular configuration with reg(P) = k > 1 and c =C R(P).

Let n′ = |Pc | = n −mul (c). The following property holds:

∀u ∈ Pc : ∀k ′ ∈ [1,k] :∢(u,c,S
nk′

k (u,c)) =
2k ′π

k

Proof.

S
n′k′

k (u,c) = ∢(u,c,S
n′

k (u))+ . . .+∢(u,c,S
n′

k (u))
︸ ︷︷ ︸

k times
= 2π

k
+ . . .+ 2π

k

(According to Lemma 3.2.1)

= 2k ′π
k

Lemma 3.2.3. Let P be a regular configuration with reg(P) = 2k,k > 1 and c =

C R(P). Let n′ = |Pc | = n −mul(c). The following property holds:

∀u ∈ Pc :∢(u,c,S
n′

2 (u,c)) =π

Proof. Fix u ∈ Pc . The fact that reg(P) = 2k means that SA(c) is 2k-periodic. Since
|SA(c)| = n′, this implies that 2k is a factor of n′. Consequently:

∢(u,c,S
n′

2 (u)) =∢(u,c,S
n′

2k (u))+∢(S
n′

2k (u),c,S
n′

k (u))+ . . .+∢(S
(k−1)n′

2k (u),c,S
n′

2 (u))

Since reg(P) = 2k, it holds according to Lemma 3.2.1 that:

∀i ∈ [1,k −1] :∢(S
i n′

2k (u),c,S
(i+1)n′

2k (u)) =
π

k

Therefore:

∢(u,c,S
n′

2 (u) =
π

k
+ . . .+

π

k
︸ ︷︷ ︸

k times

=π

24

3.2.2 Detection of Even Regularity

In this section we present our algorithm to detect regular non-linear configura-
tions when their regularity is even. It is inspired from Algorithm 2 of Anderegg
et al. [3] and runs in O(n logn) steps. It is based on the notion of median lines
adapted from [3].

Definition 9 (median(u)). Given a configuration P with |L(P)| > 1 and u ∈ P, the

median line of u, denoted median(u), is the line that passes through u and some

other point u′ ∈ P and divides the set of points into two subsets the cardinality of

each is smaller or equal to n
2 −1.

Lemma 3.2.4. Let P be a regular configuration with reg(P) = 2k,k > 1 and c =

C R(P). Let n′ = |Pc | = n −mul(c).

The following property holds:

∀u ∈ Pc : median(u) passes through Sn′/2(u) and c

Proof. According to Lemma 3.2.3, ∢(u,c,Sn/2(u)) = π. Hence the lemma follows.

As a corollary we have that the center of regularity lies in the intersection of all
medians.

Corollary 3.2.1. Let P be a regular configuration with |L(P)| > 1, reg(P) = 2k,k > 1
and c =C R(P). It holds that

∀u ∈ P : c ∈ median(u)

We are now ready to show how to compute the center of regularity when it is
even:

Theorem 3.2.1. Let P be a non-linear configuration with |L(P)| > 1 and reg(P) =
2k,k > 1. There exists an algorithm running in O(n logn) steps that computes

reg(P) and outputs the center of regularity C R(P).

Proof. The algorithm is described formally in Figure 3.4. It firstly computes the
convex hull C H of the configuration which takes O(n logn) operations [31]. Then
it chooses an arbitrary point u in C H and computes its median(u) which is well
defined since |L(P)| > 1 and reg(P) = 2k,k > 1. After that, it picks another point
u′ that belongs to C H but not to median(u). The fact that P is non-linear guar-
antees that u′ is well-defined. Since u′ 6∈ median(u), it follows that median(u) 6=
median(u′). Hence, c, the intersection of median(u) and median(u′) (line (5)) is

25

unique. According to Corollary 3.2.1, if the configuration is regular, its center of
regularity lies necessarily in c. To check if c is indeed a center of regularity, it suf-
fices to compute SA(c) (O(n logn) operations as shown in Lemma 3.1.1) and to
test if it is periodic (O(n) operations [5]). If SA(c) is periodic, then P is regular with
reg(P) = per (SA(c)). If not, P is either not-regular or its regularity is not even.

(1) C H ← CONVEX HULL(P)
(2) u ← an arbitrary point on C H

(3) u′ ← a point on C H but not on median(u)
(4) If (median(u)∩median(u′) 6= ⊥)
(5) c ← median(u)∩median(u′)
(6) SA ← SA(c)
(7) k ← per (SA)
(8) If (k > 1) RETURN (P IS REGULAR, C R(P) = c , REG(P) = k) endif

(9) endif

(10) return (P IS NOT REGULAR OR ITS REGULARITY IS ODD)

Figure 3.4: Detection of Even Regularity.

3.2.3 Detection of Odd Regularity

In this section we present our algorithm for detecting regular non-linear con-
figurations when their regularity is greater or equal to 3. Its time complexity is
O(n4 logn).

We start by defining the notion of capacious arcs (see Figure 3.5) and we prove
some properties about them that we use to detect regularity.

Definition 10 (Capacious Arc). Let u, v ∈R
2 be any two distinct points of the plane

and let α ∈ (0,π) be a given angle.

• The set of points x ∈ R
2 such that ∢(u, x, v,!) = α is an open1 arc of the

circle that passes through u and v and the center of which c is such that

∢(u, x, v,!) = 2α.

Let Xα(u, v,!) denote this arc and let Cα(u, v,!) denote the circle that in-

clude it.

• Xα(u, v,") and Cα(u, v,") are defined in a similar way.

1excluding u and v

26

Figure 3.5: The figure illustrates the capacious arcs Xπ/3(u, v,") (continuous blue line)
and Xπ/3(u, v,!) (dashed line). Xπ/6(u, v,") and Xπ/6(u, v,!) are depicted in red.

• Let Xα(u, v) be the set of points x ∈ R
2 such that ∢(u, x, v) = α. Clearly,

Xα(u, v) = Xα(u, v,!)∪Xα(u, v,").

Lemma 3.2.5. Let P be a configuration with |L(P)| > 2,reg(P) = k > 2 and c =

C R(P).

Let n′ = |Pc | = n −mul(c),k ′ = ⌈k
2 ⌉−1 and α= 2k ′π

k
.

Let u ∈ P with u 6= c and denote by v, w the points S
k′n′

k (u,c,!) and

S
k′n′

k (u,c,") respectively. It holds that:

(i) c ∈ Xα(u, v).

(ii) For every A ∈ {Cα(u, v,!),Cα(u, v,")}, for every

B ∈ {Cα(u, w,!),Cα(u, w,")}, if A = B then c 6∈ A.

27

Proof. (i) First, we show that k ′ ∈ [1,k]. Recall that k ′ = ⌈k/2⌉−1. Hence, k ′ ≤ k

by definition. Since k > 2, it follows that k ′ ∈ [1,k].

Consequently, according to Lemma 3.2.2 we have ∢(u,c,S
n·k′

k (u,c)) = 2k ′π
k

=

α. That is, ∢(u,c, v) =α. Therefore c ∈ Xα(u, v).

(ii) Fix A ∈ {Cα(u, v,!),Cα(u, v,")} and B ∈ {Cα(u, w,!),Cα(u, w,")}. Assume
towards contradiction that A = B and c ∈ A. This means that all the points
u, v, w and c belong to the same circle A. As a consequence, the point c lies
strictly outside the convex hull of the points u, v, w . We show that this leads
to a contradiction.

Remember that v and w correspond to the points S
k′n′

k (u,c,!) and

S
k′n′

k (u,c,") respectively. It follows that ∢(u,c, v,!) = 2k ′π
k

= α and
∢(w,c,u,!) =α. Thus, ∢(v,c, w,!) = 2π−2α.

Since k ′ = ⌈k/2⌉− 1 and k > 2 then α = 2k ′π
k

∈ [π/2,π) and 2π− 2α ∈ (0,π].
Consequently, the angles∢(u,c, v,!),∢(w,c,u,!) and∢(v,c, w,!) are not
reflex (less than π), which means that c is inside the triangle formed by the
points u, v, w . Contradiction.

Lemma 3.2.6. Let P be a configuration with |L(P)| > 2,reg(P) = k > 2 and c =

C R(P).

Let n′ = |Pc | = n −mul(c),k ′ = ⌈k/2⌉−1 and α= 2k ′π
k

.

Let u ∈ P with u 6= c. It holds that :

(i) There exist v, w ∈ P such that c ∈ F (v, w) where

F (v, w) = {A ∩ B | (A ∈ {Xα(u, v,!), Xα(u, v,")}) ∧ (B ∈

{Xα(u, w,!), Xα(u, w,")}) ∧ (A 6⊆ Cα(u, w,!) ∪ Cα(u, w,")) ∧ (B 6⊆

Cα(u, v,!)∪Cα(u, v,"))}

(ii) For every v, w ∈ P, |F (v, w)| ≤ 4.

Proof. (i) . Let v, w be the points S
k′n′

k (u,c,!) and S
k′n′

k (u,c,") respectively.
According to Lemma 3.2.5, it holds that:

c ∈ Xα(u, v)∩Xα(u, w)

That is,

c ∈ (Xα(u, v,!)∪Xα(u, v,"))∩ (Xα(u, w,!)∪Xα(u, w,"))

28

But according to Lemma 3.2.5 (ii), if A ∈ {Xα(u, v,!), Xα(u, v,")}
and A ⊆ (Cα(u, w,!) ∪ Cα(u, w,")), then c 6∈ A. Similarly, if B ∈

{Xα(u, w,!), Xα(u, w,")} and B ⊆ (Cα(u, v,!)∪Cα(u, v,")), then c 6∈ B .

Hence c ∈ F (v, w).

(ii) Observe that F (v, w) ⊆ G {u} where G = {A ∩ B | (A ∈

{Cα(u, v,!),Cα(u, v,")}∧(B ∈ {Cα(u, w,!),Cα(u, w,")}∧\{uCαuw ,nCαuw })∧
(B ∈ {uCαuw ,nCαuw }) \ {uCαuv ,nCαuv })}.

If two distinct circles intersect, they do so either in two distinct points or in
one degenerate point. Hence, taking any two distinct circles A and B with
A ∈ {Cα(u, v,!),Cα(u, v,") and B ∈ {Cα(u, w,!),Cα(u, w,"), they inter-
sect in point u and possibly another point. Consequently G consists of at
most five points. It follows that |F (v, w)| ≤ 4.

Theorem 3.2.2. Given P a configuration with |L(P)| > 2 and k > 2. There exists an

algorithm running in O(n4 logn) steps that detects if reg(P) = k and if so, it outputs

its center of regularity.

Proof. The algorithm is the following. We fix any points u ∈ P and we test if it
is a center of regularity by computing SAP (u) (O(n logn) time) and testing if it is
periodic (O(n) operations). If so, P is regular with reg(P) = per (SAP (u)).

Otherwise, we proceed as follows. For every v ∈ L(P), for every w ∈ L(P) \ {v},
we compute the set F (v, w) as defined in Lemma 3.2.6, and we test for every point
x in F (v, w), if x is a center of regularity or not by computing the periodicity of
SAP (x). If SAP (x) is periodic than P is regular with reg(P) = per (SAP (x)).

Lemma 3.2.6 guarantees that if P is regular then the test will be conclusive
for at least one pair (v, w) of points of L(P). The whole algorithm executes in
O(n3 logn): we browse all the possible pairs (v, w), and for each pair we generate
up to four candidates for the center of regularity by computing the corresponding
set F (v, w) (Lemma 3.2.6) , hence we have O(n2) candidates. Then, O(n logn) time
is needed to test each candidate x by computing the periodicity of SAP (x).

Note that our algorithm follows the same patterns as those presented in [3]:
generating a restricted set of candidates (points) and testing whether each of them
is a center of regularity.

Theorem 3.2.3. Given P a configuration of n distinct points. There exists an algo-

rithm running in O(n4 logn) steps that detects if P is k-regular with k ≥ 3, and if

so, it outputs k and the center of regularity C R(P).

29

Proof. It suffices to generates all the divisors k of n that are greater than 2. Then,
for each k, we test if P is k-regular as shown in Theorem 3.2.2. When the test is
conclusive, this algorithms return the center of regularity c, so we can output (P

IS REGULAR, C R(P) = c , REG(P) = k). If test was inconclusive for every generated
divisor k, we simply output (P NOT REGULAR).

Theorem 3.2.4. Given P a non-linear configuration of n distinct points. There ex-

ists an algorithm running in O(n4 logn) steps that detects if P is k-regular with

k ≥ 2, and if so, it outputs k and the center of regularity C R(P).

Proof. We combine the algorithms of Theorems 3.2.1 and 3.2.3. First, we test if P is
k-regular for some even k using the algorithm of Theorem 3.2.1 (O(n logn) steps).
If so, we output k and the center of regularity c which are provided by the called
algorithm. Otherwise, we test odd regularity using the algorithm of Theorem 3.2.3
(O(n4 logn) steps) but by restricting the analysis to only the odd divisors of n (the
even divisors were already tested).

3.3 Computation of Weber Points for Quasi-Regular

Configurations

In this section we show how to compute Weber points for quasi-regular configura-
tions. Let us start with the following lemma which proves a property about regular
configurations:

Lemma 3.3.1. Let P be any configuration and let p ∈R
2. Let m ∈N

+.

P is regular with center c and reg(P) = m iff ∀x 6= c ∈ R
2 : ∀k ∈ [1,m] : ∀y =

N (x,c, 2kπ
m

) : it holds that HF (c, x) and HF (c, y) contain the same number of robots

of P.

Proof. Remind that P is regular with reg(P) = m and center c iff there exists a con-
figuration P ′ that is rotational symmetric with respect to c such that P can be ob-
tained from P ′ by moving robots of P ′ towards c without reaching it. Moreover
sym(P ′) = m.

Fix x and y ∈R
2 such that y = N (x,c, 2kπ

m
) for some k ∈ [1,m]. We have to prove

that HF (p, x) and HF (p, y) contain the same number of robots of P . Observe that
the number of robots in HF (c, x) and HF (c, y) remains invariant when we trans-
form P ′ into P as robots are allowed to move only towards c without reaching it.
So no robot joins or leaves either HF (c, x) or HF (c, y). Hence, to prove our claim
it suffices to show that HF (c, x) and HF (c, y) contain the same number of robots
of P ′.

30

Since sym(P ′) = m, it follows that P ′ remains invariant if we rotate it around
c with an angle of 2kπ

m
. Note that HF (c, x) can be seen as the result of rotating

HF (c, y) by an angle of 2kπ
m

. Hence HF (c, x) contains the same number of robots
of P ′ as HF (c, y). This proves the lemma.

We give some definitions:

Definitions:

• Given a multiset of points P and any point c ∈R
2, we define CIRC(P,c) as the

smallest circle centered at c that encloses all points in P .

• Given a point x ∈ P and some α ∈ [0,2π], the clockwise neighbor of x with
respect to point c and angle α, denoted by N (x,c,α) is the point y such that
|c, x| = |c, y | and ∢(x,c, y,!) =α.

• Let Pbe a configuration with |L(P)| > 1 and let c ∈ P . Let m ∈ N
+. We de-

fine Xm(P,c) as the following set of points {x ∈ CIRC(P,c) | ∃k ∈ [1,m] : ∃y =

N (x,c, 2kπ
m

) : (c, y] contains at least one robot}.

• For each point x ∈ Xm(P,c), let LOC(P, x,c) (or LOC(P, x)) denote the num-
ber of robots of P that are located in (c, x] and let OBJ(P, x) denote
max{LOC(P, y)|(y = N (x, p, 2kπ

m
))∧ (k ∈ [1,m])}.

Lemma 3.3.2. Given a configuration P and a point c ∈ P, P is q-regular with center

c and qreg(P) = m > 1 if and only if:

mul(c) ≥
∑

x∈Xm (P,c)
(OBJ(P, x)− LOC(P, x)) (α)

Proof. According to Definition 7, P is quasi-regular with center c and qreg(P) = m

iff (i) there exists a configuration P ′ that is regular with center c, (ii) reg(P ′) = m

and (iii) P can be transformed into P ′ by moving only robots located at c. To prove
the lemma it suffices to show that (i)∧ (i i)∧ (i i i) ⇔ (α).

⇐) Assume (α) holds. For each x ∈ Xm(P,c), we move (OBJ(P, x)−LOC(P, x)) robots
from c to x. Let P ′ be the resulting configuration. Since (α) is satisfied, there
are enough robots located in c to perform this action. This proves (iii).

Note that Xm(P ′,c) = Xm(P,c).

By construction of P ′, it holds that ∀x ∈ Xm(P ′,c) : LOC(P ′, x) = OBJ(P, x).
But by definition of OBJ(P, x), we have ∀x ∈ Xm(P,c) : ∀k ∈ [1,m] : ∀y =

N (x,c, 2kπ
m

) : OBJ(P, x) = OBJ(P, y). It follows that

31

∀x ∈ Xm(P ′,c) : ∀k ∈ [1,m] : ∀y = N (x,c,
2kπ

m
) : LOC(P ′, x) = LOC(P ′, y)

Consequently, according to Lemma 3.3.1, it holds that (i) P ′ is regular with
center c and (ii) reg(P ′) = m.

⇒) Assume (i)∧(i i)∧(i i i). Since P ′ can be obtained from P by moving only robots
located at c according to (iii), it follows that Xm(P,c) ⊆ Xm(P ′,c). Moreover,

∀x ∈ Xm(P,c) : LOC(P ′, x) ≥ LOC(P, x) (β)

Since P ′ is regular with center c and reg(P ′) = m, it holds according to
Lemma 3.3.1 that ∀x ∈ Xm(P,c) : ∀k ∈ [1,m] : ∀y = N (x,c, 2kπ

m
) : LOC(P ′, x) =

LOC(P ′, y). But LOC(P ′, y) ≥ LOC(P, y) according to Equation (β). Hence,

∀x ∈ Xm(P,c) : ∀k ∈ [1,m] : ∀y ∈ N (x,c,
2kπ

m
) : LOC(P ′, x) ≥ LOC(P, y)

It follows that:

∀x ∈ Xm(P,c) : LOC(P ′, x) ≥ OBJ(P, x)

Hence,

∀x ∈ Xm(P ′,c) : (LOC(P ′, x)− LOC(P, x)) ≥ (OBJ(P, x)− LOC(P, x))

But all the robots that are in (LOC(P ′, x)−LOC(P, x)) moved there from c. Con-
sequently:

mul(c) ≥
∑

x∈Xm (P,c)
(OBJ(P, x)− LOC(P, x))

Now we are ready to prove the main theorem of our chapter:

Theorem 3.3.1. Given a non-linear configuration P of n robots, there exists an al-

gorithm that detects if P is quasi-regular and if so it outputs its center of quasi-

regularity CQR(P).

Proof. As shown in Lemma 3.1.8, CQR(P) = WP(P) hence it is unique. If WP(P) ∈
P , then it can be found by applying Lemma 3.3.2 as follows: for each p ∈ P we test
p is the center of q-regularity of P . Otherwise, WP(P) 6∈ P which means that P is
regular. Consequently, WP(P) can be computed as shown in Theorem 3.2.4.

32

C
H

A
P

T
E

R

4
WAIT-FREE CRASH-RESILIENT GATHERING

In this Chapter we present a wait-free protocol for gathering in the ATOM model in
which robots share a common chirality and are endowed with strong multiplicity
detectors. The next section present the different classes of configurations that are
used by the algorithm and their properties. Section 4.2 gives the protocol and its
formal proof of correctness.

4.1 Configurations

In the gathering algorithm, robots compute their next destinations based on the
current configuration. Before presenting the algorithm, we present a classifica-
tion of the robot configurations which will simplify the algorithm description. In
the following, we formally define six classes of configurations and prove that they
constitute a partition of the set P of all possible configurations of n robots.

Bivalent(B) B = {P ∈ P | (∀u ∈ L(P) : mul(u) = n/2)}. B is the set of configura-
tions where the robots are equally distributed over two points in the space.

Multiple (M) M = {P ∈P | ∃u ∈ L(P) : ∀v 6= u ∈ L(P) : mul(v) < mul(u)}. A config-
uration P belongs to M if it has a point u whose multiplicity is greater than
that of any other distinct point in P .

Colinear(L) L = {P ∈ P | (P is linear) ∧ (P 6∈ B ∪M)}. We define the subsets
L 1W and L 2W of colinear configurations depending on whether their We-

33

ber point is unique or not. That is, L 1W = {P ∈L | (W P (P) is unique)} and
L 2W =L \L 1W .

Q*Regular (QR) QR = {P ∈P | (qreg(P) > 1)∧ (P 6∈B∪M ∪L)}.

Asymmetric (A) A = {P ∈P | (sym(P) = 1)∧ (P 6∈B∪M ∪L ∪QR}.

Let X = {B,M ,L ,QR,A }. It is easy to see that X is a partition of P. By def-
inition, the classes are mutually disjoint. All linear configurations belong to the
set B∪M ∪L . For a non-linear configuration P either sym(P) > 1 which implies
P ∈QR∪B∪M , or sym(P) = 1 which implies that P ∈A ∪B∪M . Thus

⋃
X=P.

Properties of Configurations

Lemma 4.1.1. Let P be a linear configuration. The following properties hold:

1. (|L(P)| = 2) ⇒ (P ∈B∪M)

2. (|L(P)| = 3) ⇒ (P ∈M ∪L 1W)

3. (P ∈L 2W) ⇒ (|L(P)| ≥ 4)

Proof. 1. Assume |L(P)| = 2. That is, L(P) consists in two distinct points u1 and
u2. If mul(u1) = mul(u2), then P ∈B. Otherwise, P ∈M as either (mul(u1) >
mul(u2)) or (mul(u2) > mul(u1)).

2. Assume |L(P)| = 3, i.e. L(P) consists in three distinct points, let them be
u1,u2,u3. Suppose w.l.o.g. that u2 ∈ [u1,u3]. We assume that P 6∈ L 1W

and we prove that P ∈ M . The fact that |L(P)| = 3 implies that P 6∈ B.
Since P is linear and P 6∈ L 1W ∪B, it follows from the definition of L

that P ∈ L 2W ∪M . To prove that P ∈ M it suffices then to show that
P 6∈ L 2W . Assume towards contradiction that P ∈ L 2W . This means
that the set Medi an(P) is not a singleton. Hence, there are at least two
points in L(P) that are in Medi an(P). Consequently, either u1 or u3 belongs
to Medi an(P) (together with u2). Assume w.l.o.g that u1 ∈ Medi an(P).
This implies that mul(u1) ≥ ⌈n/2⌉. Hence mul(u2) + mul(u3) ≤ n − ⌈n/2⌉.
That is, mul(u2) + mul(u3) ≤ ⌈n/2⌉. Since mul(u2) ≥ 1 and mul(u3) ≥ 1,
it follows that (mul(u2) ≤ ⌈n/2⌉ − 1) and (mul(u3) ≤ ⌈n/2⌉ − 1). But we
showed that mul(u1) ≥ ⌈n/2⌉. Consequently we have mul(u2) < mul(u1) and
mul(u3) < mul(u1). This means that P ∈ M which contradicts our assump-
tion that P ∈ L 2W . This finishes the proof of P ∈ M (assuming |L(P)| = 3
and P 6∈L 1W). Hence:

34

(|L(P)| = 3) ⇒ (P ∈M ∪L 1W)

3. This follows from the above two results.

Definition 11 (Safe points). Given a configuration P, a robot position p ∈ P is safe
iff ∀q ∈R

2 \ {p}: HF (p, q) contains at most (⌈n/2⌉−1) robots of P.

The notion of safe points is important because any safe point can be used as
a gathering point without the possibility that the robots form the bivalent B con-
figuration while moving towards it. We can show the following properties for safe
points.

Lemma 4.1.2. Any non linear configuration contains a safe point.

Proof. Let P be a non linear configuration. We say that Q ⊆ P is a quorum iff:
(i) |Q| ≥ ⌊n/2⌋+ 1 and (ii) all points of Q are collinear and Q is maximal for this
property, that is, for any Q ′ ⊃ Q, the points of Q ′ are not collinear. Let LINE(Q)
denote the line in which are located the points of Q.

Let Q1 and Q2 any two distinct quorums of P . Condition (i) implies that Q1

and Q2 intersect, i.e. Q1 ∩Q2 6= ; and the maximality condition in (ii) implies that
LINE(Q1) 6= LINE(Q2).

We show in the following that any point that is not safe belongs necessarily to
a quorum. Let p ∈ P that is not free. We prove the existence of quorum Q to which
p belongs. Since p is not safe, there exists q ∈R

2 \ {p} such that HF (p, q) contains
at least (⌈n/2⌉) robots located in it. Hence, p ∪HF (p, q) contains at least ⌈n/2⌉+1
robots. Let S denote the multiset of positions of these robots. Since (|S| ≥ ⌈n/2⌉+1)
and the points of S are collinear, there exists a set Q with Q ⊇ S that is a quorum
with p ∈Q.

We prove the lemma by contradiction. Assume that no point of P is safe, i.e.
each point belongs to a quorum. This implies, as P is not linear, that there are at
least two distinct quorums because a single quorum cannot contain all elements
of P , otherwise the configuration would be linear. Let Q1 and Q2 be any two quo-
rums of P with Q1 6=Q2 and let p be a point in Q1∩Q2. Since p is not safe according
to the contradiction assumption, there exists some q ∈R

2 \ {p} such that HF (p, q)
contains at least ⌈n/2⌉ robots positions. Denote by X the multiset containing these
positions. Note that |X | ≥ ⌈n/2⌉

As Q1 6= Q2, it follows according to the maximality of property (ii) of quo-
rums that LINE(Q1) 6= LINE(Q2). Hence, either l i ne(p, q) 6= LINE(Q1) or l i ne(p, q) 6=
LINE(Q2). Assume w.l.o.g that l i ne(p, q) 6= LINE(Q1). Since p ∈ l i ne(p, q), p ∈ Q1

35

and l i ne(p, q) 6= LINE(Q1) it follows that l i ne(p, q)∩ LINE(Q1) = {p}. Hence, the
robots positions that are in HF (p, q) do not belong to Q1 which means that
X∩Q1 =;. Hence, |X∪Q1| = |X |+|Q1| ≥ (⌈n/2⌉)+(⌊n/2⌋+1). That is |X∪Q1| ≥ n+1.
But |X ∪Q1| ⊆ P , a contradiction! Thus the lemma holds.

Lemma 4.1.3. If P ∈B∪L 2W , then P does not have a safe point.

Proof. Assume towards contradiction that there exists a position p ∈ P that is safe.
Since P is linear, this means that |{q ∈ P | q < p}| ≤ (⌈n/2⌉−1) and |{q ∈ P | q > p}| ≤
(⌈n/2⌉−1).

But P ∈B∪L 2W , it follows that P has two distinct median positions, let them
be u1 and u2 and assume that u1 < u2. It holds that either (u2 > p) or (u1 < p).
Assume w.l.o.g. that (u1 < p). Since u1 is a median position in P , it holds that
|{q ∈ P | q ≤ u1}| ≥ ⌈n/2⌉. Hence, as u1 < p, it follows that |{q ∈ P | q < p}| ≥ ⌈n/2⌉;
A Contradiction!

4.2 The Algorithm

The following lemma is a simple generalization of Lemma 3.1 in [1] that takes
into account configurations containing multiplicity points and general adver-
saries characterized using their cores. Given a configuration P , an algorithm A ,
denote by M(P,A) the set of positions of robots that A instructs to move in P [1].

Lemma 4.2.1. A convergence or gathering algorithm A is tolerant against an ad-

versary X only if at each configuration P, either (1) M(P,A) is a superset of a core

of X or (2) |L(P \ M(P,A))| ≤ 1).

As a consequence, since we want our algorithm to be wait-free ((n − 1)-
tolerant), it must be the case that at each configuration P , there is at most one
location c ∈ L(P) such that the robots at c are allowed to stay in the same position
when activated, while all other robots must choose a destination different from
the one they are currently occupying. The algorithm must also ensure that robots
never reach the configuration B, due to the following impossiblity result adapted
from [23].

Lemma 4.2.2. Starting from a configuration of type B, there is no algorithm that

achieves gathering even in fault-free ATOM model with strong multiplicity detectors

♦M and common chirality.

Proof. A similar result was proved by Dieudonné and Petit [23] without the as-
sumption of common chirality, but their argument still holds if we add it.

36

We now define more precisely the objective of a fault-tolerant gathering algo-
rithm. At any time τduring the execution of the algorithm, we define F (r,τ) = tr ue

if robot r has crashed at time ti ≤ τ. The set of non-faulty robots at time τ is de-
noted by Li ve(R,τ) = {ri ∈ R|F (ri ,τ) = f al se}. The set of non-faulty robots at
time τ is denoted by Li ve(R,τ) = {ri ∈R|F (ri ,τ) = f al se}.

Definition 12. Given a set of robots R that form configuration P at time τ,

GATHERED(R,τ) = true iff (|L(Li ve(R,τ))| = 1) and (M(P,A)∩L(Li ve(R,τ)) =;.

Input: P (The observed configuration during the precedent LOOK phase).
Output: The destination of the robot.
COMPUTE():

(1) r ← MY POSITION IN P

(2) if P ∈M then

(3) el ected ← argmax
p∈P

mul(p)

(4) if (r = el ected)∨ (6 ∃p ∈ P : p ∈ (r,el ected)) then

(5) return el ected

(6) else

(7) X ← {p ∈ P : p 6∈ HF (el ected ,r)}

(8) v ← argmin
p∈X

(k | p = Sk (r,el ected))

(9) let d ∈R
2 s.t. ((|d ,el ected | = |r,el ected |)∧ (∢(r,el ected ,d) =∢(r,el ected , v)/3))

(10) return d

(11) if P ∈QR∪L 1W then

(12) return W P (P)

(13) if P ∈A then

(14) X ←the set of safe points in L(P).
(15) el ected ← argmax

p∈X
(mul(p), 1∑

q∈P di st (p,q) ,V (p))

(16) return el ected

(17) if P ∈L 2W then

(18) c ← center (P)
(19) if r 6∈C H(P) then

(20) return c

(21) else

(22) let d ∈R
2 s.t. (|d ,c| = |r,c|)∧ (∢(r,c,d) =π/4)

(23) return d

Figure 4.1: Gathering Algorithm: COMPUTE Phase.

37

Gathering Algorithm

We now describe the algorithm in terms of actions taken by a robot r based on the
current configuration and the position of the robot r within the configuration. A
more technical description is given in Figure 4.1.

Configuration P ∈M

Let c be the unique point of maximum multiplicity in P . If robot r is located at c,
it does not move. Otherwise, if there are no robots between r and c, robot r moves
directly towards c and if not, it does a side-step i.e. it moves to the closest point
d on a half-line HF (c,d) such that the angle between half-line HF (c,d) and half-
line HF (c,r) is less than or equal to 1/3 of the angle between half-line HF (c, p)
and half-line HF (c,r), for any other robot location p ∈ P . This ensures the robot
does not collide with another robot, i.e. it does not create a new point of maximum
multiplicity. Note that there may be multiple robots colocated with r , these robot
may make the same move as r . However the value of mul(r) would never increase
unless r reaches the point c. Thus, the algorithm ensures that the robots remain
in a configuration of type M until gathering is achieved.

Configuration P ∈L 1W

By definition, we know that configuration P contains a unique Weber-point c

which is also the median and can be computed easily. Each robot r moves di-
rectly towards the Weber point c which remains invariant during the movement.
Eventually the configuration changes to M or a gathered configuration.

Configuration P ∈QR

In this case, robot r moves to the center c of quasi-regularity of P (which is also the
Weber-point). Thus, the Weber-point c remains invariant during the movement
and eventually the configuration changes to M or a gathered configuration.

Configuration P ∈A

Since P is not linear, we know that there exists a safe point in L(P). When there
are multiple safe points, the algorithm selects a unique point c from among the
safe points in L(P). This is always possible since the configuration is asymmetric
(i.e. the view of each point is unique). The algorithm chooses the point c based
on the multiplicity(c), the sum of distances of all other robots to c, and finally the
view of c (in this order, and maximizing the first parameter, minimizing the sec-
ond parameter and maximizing the third parameter). Each robot r moves towards
this unique point c. We will show that the configuration P ′ obtained after one step
of the algorithm is of type M , QR, L 1W , or A (but not B or L 2W). Further if

38

the next configuration is again of type A then either the maximum multiplicity
increases or the minimum sum of distance decreases. This ensures that the algo-
rithm converges towards a configuration of type M or a gathered configuration.

Configuration P ∈ L 2W

In this case, there are at least 4 distinct points in the configuration. The algorithm
instructs the robots at the two end-points of the line to move away from the line.
Any robot that is not located in one of the end-points is instructed to move towards
the center of the line. If any of the robots at the end-points move then the next
configuration would be non-linear and thus, the algorithm switches to one of the
other cases above. Otherwise, if the robots are the end-points never move (i.e.
they are crashed) then the configuration remains linear but the sum of distances
between correct robots decreases, and the robots would eventually converge to a
gathered configuration or a configuration of type M .

4.3 Proof of Correctness

We now show that starting from any configuration except the bivalent configura-
tion B, the algorithm described in Figure 4.1 eventually forms a gathered config-
uration. The proof is divided into several parts, each dealing with configuration of
a different type.

Configurations of type M

Lemma 4.3.1. Let PR(τ) ∈ M . There exists a time τ′ > τ such that

GATHERED(R,τ)=true.

Proof. Let el ected(τ) be the destination chosen by the robots in configuration
P (τ), i.e. el ected(τ) = argmax

p∈P (τ)
mul(p). A robot position p ∈ P (τ) is said to be free

with respect to el ected(τ) if no robot is located in the interval (p,c). The lemma
follows from the following two claims that we prove below:

C1: (P (τ) ∈M) ⇒ ((P (τ+1) ∈M)∧ (el ected(τ+1) = el ected(τ)))

C2: (∀τi ≥ τ : (P (τi) ∈ M) ∧ (el ected(τi) = el ected(τ))) ⇒ (∃τ′ ≥ τ :
GATHERED(R,τ′)=true).

Proof of C1: Let c = el ected(τ) be the point of maximum multiplicity in the con-
figuration P (τ). We need to show that c remains the point of maximum multiplic-
ity in P (τ+ 1). In fact we show a stronger result that no two robots that were in

39

distinct locations at τ can be at the same location at time τ+1, unless the robots
are at c. Let us assume the contrary, i.e. let r1 and r2 be robots that occupied dis-
tinct locations in P (τ) but occupy the same location p 6= c in P (τ+1). Note that
neither of the robots r1 and r2 are located at c at time τ (since otherwise the algo-
rithm would instruct them to remain at c and they would not be at p at τ+1).

According to the algorithm any robot r in configuration P (τ) ∈ M can make
two possible moves: (i) either robot r moves directly towards c (Line (5) of algo-
rithm) or, (ii) robot r moves to a point d such that r cd is an isosceles triangle with
central angle 0 < θ < π/3 at c (Line (9) of algorithm). If both the robots r1 and r2

both make move of type (i), then they are distinct free points and in this case their
paths may not intersect except at c. Otherwise, suppose one of the robots (say
r1) makes a move of type (ii) directly towards a point d . Consider the triangle r2cd

and let ∢(r2,c,d) = θ. The other robot r2 is located either on the half-line HF (c,r1)
or, on a different half-line HF (c,r2) which forms an angle greater than 3∗θ with
the half-line HF (c,r1) w.r.t. point c. In the second case, the path of robot r2 will
never intersect the line segment between c and d . In the first case, either robot r2

is on a free point (and thus, it will move on the line segment [c,r2] which doesnot
intersect the line segment [c,d]) or robot r2 is not free and thus it makes a move
on a line segment parallel to [c,d]. In both cases, there is no common point p in
the path of the two robots.

Proof of C2: In this case, if c = el ected(τ) is the point of maximum multiplic-
ity in P (τ) then c is the unique point of maximum multiplicity in all subsequent
configurations. Whenever a robot on a free point is activated it moves closer to
the point c. Whenever a blocked (i.e. not free) robot is activated, at least one
robot moves from a blocked position to a free point. Once a robot r moves to a
free point at time τi , it may be blocked in subsequent steps by only robots that
moved with robot r in that same time step (i.e. these robots were live at that time
step). Thus an adversary can prevent a non-faulty robot r from reaching point c

only by changing a live robot to a crashed robot after each step in which robot r

is activated. After a finite time, the adversary will run out of live robots. Thus all
live robots will eventually reach c. Once a robot reaches c, the algorithm never
instructs the robot to move (since c is the unique point of maximum multiplicity).
Thus, GATHERED(R,τ) will be true at that time.

Configurations of type L 1W

Lemma 4.3.2. Let P (τ) ∈L 1W . There exists a time τc > τ such that either (P (τc) ∈
M) or, (GATHERED(R,τc) = tr ue).

40

Proof. The lemma follows from the following two claims that we prove below:

C1: (P (τ) ∈L 1W) ⇒ ((P (τ+1) ∈M ∪L 1W)∧ (W P (P (τ+1)) =W P (P (τ))))

C2: (∀τ′ ≥ τ : (P (τ′) ∈ L 1W) ∧ (W P (P (τ′)) = W P (P (τ)))) ⇒ (∃τc ≥ τ :
GATHERED(R,τc) = tr ue).

Proof of C1: Since P (τ) ∈L 1W , it follows that W P (P (τ)) = c is unique and P (τ+
1) is obtained by moving robots in P (τ) towards c (line 12 of the algorithm). Hence,
according to Corollary 3.1.1, W P (P (τ+1)) = W P (P (τ)) = c. Moreover, P (τ+1) is
linear. This, combined with the fact that its Weber point is unique implies that
P (τ+1) cannot be of type B or L 2W . Therefore, P (τ+1) ∈M ∪L 1W .

Proof of C2: Whenever a robot in configuration L 1W is activated it moves to-
wards the Weber-point c and Weber-point remains invariant due to this move-
ment. Thus, for all configurations P (τ′) the Weber-point is the same point c. For
each non-faulty robot r the distance between r and c decreases every time the
robot r is activated (unless r is already at c). Thus all non-faulty robots are at the
point c at some time τc and GATHERED(R,τc)=true.

Configurations of type QR

Lemma 4.3.3. Let P (τ) ∈ QR. There exists a time τc > τ such that (P (τc) ∈ M ∪

L 1W)∨ (GATHERED(R,τc) = tr ue).

Proof. Let c = W P (P (τ)). The lemma follows from the following two claims that
we prove below:

C1: (P (τ) ∈QR) ⇒ (P (τ+1) ∈M ∪L 1W ∪QR)∧ (W P (P (τ+1)) =W P (P (τ))))

C2: (∀τ′ ≥ τ : (P (τ′) ∈ QR) ∧ (W P (P (τ′)) = W P (P (τ))) ⇒ (∃τc ≥ τ :
GATHERED(R,τc) = tr ue).

Proof of C1: Since P (τ) ∈ QR, robots that are activated at τ move towards
W P (P (τ)) = CQR(P (τ)) according to line (12) of the code. Hence, since P (τ) is
Q-regular, the obtained configuration P (τ+1) is Q-regular also with the same cen-
ter of Q-regularity as P (τ) Hence, W P (P (τ+ 1)) = CQR(P (τ+ 1)) = CQR(P (τ)) =
W P (P (τ)).

As P (τ+1) is Q-regular, it holds according to the definition of configurations
QR that if P (τ+1) 6∈B∪M ∪L then P (τ+1) ∈QR. Therefore, P (τ+1) ∈B∪M ∪

L ∪QR. It remains to show that P (τ+1) 6∈B∪L 2W . For this, it suffices to show

41

that P (τ+1) has a unique Weber point. But this follows Corollary 3.1.1 and the fact
that W P (P (τ)) is unique.

Proof of C2: Since all the configurations after τ are of type QR and since the
Weber point remains invariant after τ, it follows that all activated robots after τ

choose the same destination point: W P (P (τ)). Hence, there is a time τc at which
all live robots have reached this point. That is, GATHERED(R,τc) = tr ue.

Configurations of type A

Lemma 4.3.4. Let P (τ) ∈ A . There exists a time τc > τ such that (P (τc) ∈ M ∪

L 1W ∪QR)∨ (GATHERED(R,τc) = tr ue).

Proof. Given a configuration P , let φ(P) be the couple of values defined by
(mul t , sum) = max{(mul(p), 1∑

q∈P |p,q|) | p ∈ P }.

The lemma follows from the claims C1 and C3 below. Claim C2 is used to prove
C3.

C1: (P (τ) ∈A) ⇒ (P (τ+1) ∈M ∪L 1W ∪QR∪A)

C2:

(P (τ) ∈A) ⇒ (P (τ+1) = P (τ))
∨ (φ(P (τ+1)).mul t >φ(P (τ)).mul t)
∨ (φ(P (τ+1)).mul t =φ(P (τ)).mul t)∧ (φ(P (τ+1)).sum−1 <φ(P (τ)).sum−1))

C3: (∀τ′ ≥ τ : P (τ′) ∈A) ⇒ (∃τc ≥ τ : GATHERED(R,τc) = tr ue).

Proof of C1: P (τ) ∈A means that s ym(P (τ)) = 1. Hence, each position in L(P (τ))
has a unique view. This guarantees that the “elected” position computed in line 15
is unique and common to all activated robots at τ, let us denote it by u. Moreover,
u is safe in P (τ). Hence, all activated robots at τ move towards the same safe point
u which results in configuration P (τ+1). We observe that u is also safe in P (τ+1)
since for all x ∈R

2 \{u}, the number of robots that are located at HF (u, x) does not
increase between τ and τ+1 (it may even decrease if some of them reach u). Thus,
P (τ+1) contains at least one safe point (u). According to Lemma 4.1.3 this implies
that P (τ+1) 6∈B∪L 2W which suffices to prove the claim.

42

Proof of C2: Assume that P (τ + 1) 6= P (τ). Let u ∈ P (τ) be the common
“elected” position chosen by the algorithm (line 15). Hence, by definition,
(mul(u),

∑

pi (τ)∈P (τ) |u, pi (τ)|) =φ(P (τ)). Since all activated robots at τ move to the
same destination u, it follows that the resulting configuration P (τ+1) satisfies:

∑

pi (τ+1)∈P (τ+1)
|u, pi (τ+1)| ≤

∑

pi (τ)∈P (τ)
|u, pi (τ)| =φ(τ).sum−1

Since (P (τ+1) 6= P (τ)), there exists at least one robot ri whose position at τ+1
is distinct from its position at τ. That is pi (τ+1) 6= pi (τ). Note that since all robots
move towards u, it follows that pi (τ+1) ∈ [pi (τ),u]. We distinguish between two
cases:

1. pi (τ+ 1) = u. In this case mul(u) is incremented. Note that u is still safe
in τ+1 (as shown in the proof of C1). Hence, φ(τ+1).mul t = mul(u)τ+1 >

φ(τ).mul t

2. pi (τ+ 1) 6= u. That is, ri is stopped by the scheduler before it reaches u.
But since the scheduler guarantees to each robot to move by a distance of
at least ∆ before it can stop it, it follows that (|u, pi (τ+ 1)| ≤ |u, pi (τ)| −∆)
which, combined with the above inequality gives:

∑

pi (τ+1)∈P (τ+1)
|u, pi (τ+1)| ≤ (

∑

pi (τ)∈P (τ)
|u, pi (τ)|)−∆=φ(P (τ)).sum−1 −∆

Note that the multiplicity of u does not decrease even if no robot reaches it,
i.e. mul(u)τ+1 ≥ φ(P (τ)).mul t . Note that u is still safe in τ+1 (as shown in
the proof of C1). Hence,

φ(P (τ+1)) ≥ (mul(u), 1∑

pi (τ+1)∈P (τ+1) |u,pi (τ+1)|)

≥ (φ(τ).mul , 1
φ(τ).sum−1−∆

)

Therefore, either (φ(τ+ 1).mul > φ(τ)) or ((φ(τ+ 1).mul = φ(τ)) ∧ (φ(τ+
1).sum−1 ≤φ(τ).sum−1 −∆).

This proves the claim.

Proof of C3: Assume that (∀τ′ ≥ τ : P (τ′) ∈A). We have to prove that:

∃τg ≥ τ : ∀τ′ ≥ τg : (P (τ′)) = P (τ))

That is, the configuration does not change after τg which implies the existence
of a time after τg at which all the live robots lie on the same position. That is
∃τc ≥ τg : GATHERED(R,τc) = tr ue.

43

The claim follows from claim C2 above. There exists a time τ1 ≥ τ after which
φ().mul t cannot increase since the multiplicity of points is upper bounded by n.
Moreover, there exists a time τ2 ≥ τ1 after which φ().sum−1 cannot decrease since
the sum of distance is lower bounded by 0. Hence, according to claim C2, after
time τ2, the configuration remains the same and the claim follows by setting τc =

τ2.

Configurations of type L 2W

Definition 13. Assume that P (τ) is linear. Let u−(τ) and u+(τ) denote mi n(L(P (τ)))
and max(L(P (τ))) respectively. Denote by S−(τ) and S+(τ) the set of robots located

at u−(τ) and u+(τ) respectively and let S0(τ) =R \ S−(τ)∪S+(τ).

If P (τ) ∈ L 2W , then Lemma 4.1.1 implies that |L(P (τ))| ≥ 4. Hence, the sets
S−(τ), S0(τ) and S+(τ) in this case are non empty and pairwise disjoint.

Lemma 4.3.5. If P (τ) ∈L 2W , then P (τ+1) 6∈B.

Proof. It suffices to show that |L(P (τ+1))| ≥ 3. This simply follows from the fact
that robots of S−(τ), S0(τ) and S+(τ) occupy distinct positions and these groups
remain disjoint when the robots activated at τ move towards their destinations
(computed in line 18 for S0(τ) and line 22 for S−(τ) and S+(τ)).

Lemma 4.3.6. Assume P (τ) ∈L 2W . If at least one robot in S−(τ)∪S+(τ) is activated

at τ, then P (τ+1) 6∈L 2W .

Proof. Let a and b denote u−(τ) and u+(τ) respectively and let c be the midpoint
of [a,b]. Due to Lemma 4.1.1 we know that |L(P (τ))| ≥ 4 and thus other than a

and b, there exists at least two other points in L(P). The scenario considered in
this lemma can be partitioned into the following three cases: (i) No robot located
at a are activated at step τ (ii) No robot located at b are activated at step τ (iii) At
least one robot from each of a and b are activated. We will show that in each case,
P (τ+1) 6∈L 2W . Let L = l i ne(a,b). Note that all robots lie on L at time τ.

Case (i): In this case, at least one robot r located at point b is activated and ac-
cording to the algorithm, the robot r moves towards a point p such that∢(b,c, p) =
π/4. The new position p ′ reached by the robot r lies in (b, p) and thus, p ′ ∉ L. Note
that any robot r ′ ∈ S0(τ), still remains on line L at some point distinct from a (since
robots in S0(τ) are allowed to move only towards c ∈ L). Thus, L(P (τ+1)) contains
the points p ′ ∉ L, a ∈ L, and at least one other point in L that is distinct from a.
Hence P (τ+1) is not linear, which implies that P (τ+1) ∉L 2W .

44

Case (ii): This case is exactly symmetrical to case (i) above and the same result
holds.

Case (iii): If not all the robots located at a and b are activated at time τ then we
can use similar arguments as above to show that the configuration P (τ+1) is not
linear. Thus the only interesting case to consider is when all robots at a move to
the same location a′ and all robots at b move to the same location b′. Note that
a′ ∉ L and b′ ∉ L and a′ 6= b′. Thus, l i ne(a′,b′) is distinct from line L. However all
the robots ∈ S0(τ) must remain on line L in step (τ+1). If the configuration P (τ+1)
is linear then all robots∈ S0(τ) must be located on the same point at step (τ+1) and
this point must be the point of intersection of L and l i ne(a′,b′). In other words,
|L(P (τ+1))| = 3, which implies that P (τ+1) ∉L 2W (due to Lemma 4.1.1).

Lemma 4.3.7. Let P (τ) ∈ L 2W . There exists a time τc > τ such that (P (τc) ∈ M ∪

L 1W ∪QR∪A)∨ (GATHERED(R,τc) = tr ue).

Proof. Assume for the sake of contradiction that ∀τ′ ≥ τ : (P (τ′) ∈ L 2W ∪B)∧
(GATHERED(R,τ′) = f al se).

But since P (τ) ∈ L 2W and Lemma 4.3.5 says that a configuration of type B

cannot come after a configuration of type L 2W , it follows that:

∀τ′ ≥ τ : (P (τ′) ∈L 2W)∧ (GATHERED(R,τ′) = f al se)

According to Lemma 4.3.6, this is only possible if the robots located at the end-
points are never activated, which means that they are all faulty. Hence, the cen-
ter of the configuration c = center (P (τ)) remains constant during all the execu-
tion and all correct robots eventually reach this point (line 18 of the algorithm).
Hence, there is a time τc > τ at which all correct robots are located at c. Thus,
GATHERED(R,τc) = tr ue. A contradiction.

45

C
H

A
P

T
E

R

5
BYZANTINE CONVERGENCE

In this chapter we prove necessary conditions for the convergence of mobile
robots despite a subset of them being Byzantine, when these robots can move in
a uni-dimensional space. First, we prove that the strong multiplicity detection ca-
pability is necessary (Section 5.2). Then, we prove several lower bounds relating
synchrony assumptions and byzantine resilience. Recall that n denotes the total
number number of robots while f is the maximum number of faulty robots.

In more details, we show that byzantine-resilient convergence in unidimen-
sional networks is impossible to solve:

1. in FS if n ≤ 2 f (Section 5.3).

2. in B(k) with k > 1 if n ≤ 3 f (Section 5.4).

3. in AS if n ≤ 5 f and the convergence algorithm is cautious, i.e., if it always
instructs correct robots to move inside the range of all positions held by the
correct robots regardless of the locations of byzantine ones (Section 5.5).

These impossibility results hold whether the model is atomic or not.
We then show that these bounds are tight by providing matching upper

bounds. For this, we present three convergence algorithms:

1. The first algorithm (Section 5.7) solves gathering in the ATOM[FS] model pro-
vided that n > 2 f .

47

2. The second proposed algorithm (Section 5.8) works in NTOM[B(k)] when n >

3 f .

3. The last algorithm (Section 5.9) achieves convergence in the most general
setting assuming that n > 5 f : the NTOM[AS] model.

5.1 Preliminaries

In this section we propose a framework used further in deriving our lower bounds
and proving our impossibility results. First, we give a formal definition of cautious
algorithms. Then, we present the notion of equivalence between configurations
and define in a precise way assuming various multiplicity detection capability as-
sumptions Finally, we prove some important technical results that will be used
in proving the necessity of strong multiplicity detection and the lower bounds of
resilience in the following sections.

5.1.1 Cautious Algorithms

A natural way to solve convergence is to never let the algorithm increase the diam-
eter of correct robot positions. We say in this case that the algorithm is cautious.
A cautious algorithm is particularly appealing in the context of byzantine failures
since it always instructs a correct robot to move inside the range of the positions
held by the correct robots regardless of the locations of byzantine ones. The no-
tion of cautiousness was introduced in [24] in the context of classical byzantine-
tolerant distributed systems. In the following, we customize this notion to robot
networks.

Definition 14. Let Di (τ) be the last destination calculated by the robot ri before

time τ and let U i (τ) the positions of the correct robots as seen by robot ri before time

τ1. An algorithm is cautious iff ∀τ ∈T, Di (τ) ∈ range(U i (τ)) for each robot ri .

5.1.2 Equivalence of Configurations

In this subsection, we formalize the notion of equivalence between configura-
tions. Informally speaking, two configurations are equivalent if they are com-
pletely indistinguishable to individual robots. It follows that the exact definition of
this notion will depend on the assumptions on the system and on the capabilities
of robots. For example, a configuration of a single point located at position (+1) is
different from that consisting of a single point located at position (0) if robots have

1If the last calculation was executed at time τ′ ≤ τ then Di (τ) = Di (τ′).

48

a global common coordinate system. However, both configurations are equivalent
when, as we consider in this paper, each robot has its own local coordinate system.
In this case, any two configurations such that each one can be obtained from the
other by way of translation, symmetry or rotation are considered to be equivalent.
This results from the absence of a common coordinate system between robots.

Similarly, a configuration consisting of a single robot is equivalent to that con-
sisting of two robots co-located at the same position only if these robots are devoid
of any multiplicity detection capability. We observe that the weaker the capabil-
ities of robots and the assumptions of the system are, the larger the equivalence
classes of configurations are. In the sequel, we define three equivalence relations
between configurations under the model presented in the previous section while
distinguishing between three assumptions on the multiplicity detection capability
of robots.

Definition 15. (equivalence) Two configurations P and P ′ are said to be null equiv-
alent, denoted P ∼

∅M
P ′, if there exists a one-to-one mapping π : L(P) 7→ L(P ′) and a

real factor α> 0 such that ∀p, q ∈ L(P) : |p, q | =α · |π(p),π(q)|.

If moreover it holds that ∀p ∈ L(P) : (mul(p) > 1) ⇔ (mul(π(p)) > 1), then P and

P ′ are weak equivalent and we denote it by writing P ∼
?M

P ′.

Finally, if P ∼
∅M

P ′ and ∀p ∈ L(P) : mul(p) = mul(π(p)), then the two configura-

tion are strong equivalent and we write P ∼
♦M

P ′.

The definition means that if P ∼
∅M

P ′ and robots do not have any multiplicity

detectors, they behave the same in P and P ′ since they cannot distinguish between
these two configurations and they run the same deterministic algorithm. A similar
observation can be made about the equivalence relations P ∼

?M
P ′ and P ∼

♦M
P ′

when robot have weak and strong multiplicity detectors respectively.

Note that configurations that are weak (resp. strong) equivalent are necessarily
null (resp. weak) equivalent, but the converse is not necessarily true. In order
to be able to fully characterize weak (resp. strong) equivalence, robots must be
endowed with weak (resp. strong) multiplicity detectors (or stronger ones). Thus,
the multiplicity detection capability allows robots to more accurately characterize
the equivalence between configurations.

The following property follows from the definition.

Property 5.1.1. Let P and P ′ be two configurations of n mobile robots. It holds that:

(P ∼
♦M

P ′) ⇒ (P ∼
?M

P ′) ⇒ (P ∼
∅M

P ′).

49

This property means that two configurations that are equivalent when robots
are equipped with a multiplicity detector are also equivalent when no multiplic-
ity detection or when a weaker kind of it is assumed, but the converse is not true.
Thus, endowing robots with multiplicity detectors allows them to distinguish be-
tween configurations that otherwise would have been indistinguishable to them.

5.1.3 Invariants

The following theorem is fundamental to our proof. It states that if at least n − f

robots are co-located in the same position, then any convergence algorithm will
instruct them to stay in this position. Formally, we have:

Theorem 5.1.1. Let P (τ),τ ∈T be any configuration and let Set X be a subset of at

least (n − f) robots in P (τ) that are colocated at the same position, let it be x; then

all destinations computed by robots of Set X at τ using any convergence algorithm

are equal to x regardless of the robots’ multiplicity detection capabilities.

Proof. Fix P1 = P (τ) and let Set X ⊆ P1 with |set X | ≥ n − f and L(set X) = {x}.
The proof of our lemma proceeds by contradiction. We assume there exists

a convergence algorithm A that instructs the robots of Set X to move to some
position y 6= x when they are activated by the scheduler. Assume without loss of
generality that y < x (y is at the left of x). This order is only given for ease of
presentation and is unknown to robots that can not use it in their algorithms.

We now inductively create an execution in which the correct robots that run al-
gorithm A form a moving multiplicity point. That is, they stay always together but
they move indefinitely to the left by a distance equal to |p, q| at each movement.
Hence, convergence is prevented.

Let P2 be a configuration such that P1 ∼
♦M

P2 (take α = 1), but where all the

correct robots are located at x. This is possible since |Set X | ≥ n − f . We denote
by Set X2 the set of robots located at x in P2. Note that Set X2 may contain also
some Byzantine robots. According to Property 5.1.1, since P1 ∼

♦M
P2, it holds also

that P1 ∼
?M

P2 and P1 ∼
∅M

P2. So, P1 and P2 are completely indistinguishable to in-

dividual robots regardless of their multiplicity detection capabilities. Thus, robots
must behave the same in both configurations as they run the same deterministic
algorithm.

Hence, when the correct robots of Set X2 are activated in P2, their computed
destination by A must be equal to y similarly to the robots of Set X in P1. Assume
that the scheduler activates all the robots of Set X2 simultaneously and does not
stop them before they reach their destination y . At the same time, each Byzantine
robot is moved by the scheduler to the left by a distance equal to |x, y |. Denote by

50

P3 the resulting configuration. Clearly, P3 ∼
♦M

P2. Therefore, by repeating the same

actions indefinitely, the adversary is able to make the correct robots move at each
cycle by a distance equal to |x, y |. Thus, convergence is prevented which contra-
dicts the assumption of A being a correct convergence algorithm. This proves our
lemma.

Lemma 5.1.1. Let P (τ),τ ∈ T be a configuration of robots endowed with ?M. If

(|L(P (τ))| + |{p ∈ L(P (τ)) | mul(p) > 1}|) ≤ f +2; then all robots that are located at

multiplicity points do not move if activated at τ.

Proof. Fix P = P (τ) to be a configuration of robots (equipped with ?M) such that:

(|L(P)|+ |{p ∈ L(P) | mul(p) > 1}|) ≤ f +2

Let S denote the set {p ∈ L(P) | mul(p) > 1}. Let l and k be respectively the
cardinalities |L(P)| and |S|. Hence l +k ≤ f +2. Note that k ≤ l . If k = 0, then all
robots are byzantine and the lemma holds trivially. So we consider in the following
that k ≥ 1.

Denote by q1, . . . , qk the elements of S.
Now we construct a configuration Pi 1 = π1(P) such that mul(π1(q1)) = n − l −

k + 2, mul(π1(p)) = 2 for every p ∈ S with p 6= q1 and mul(π1(p)) = 1 for every
p ∈ P \ S.

To show that Pi 1 is well defined it suffices to prove that the sum of the multi-
plicities of its points is equal to n.

∑

p∈Pi 1
mul(p) =

∑

p∈P mul(π1(p))
= mul(π1(q1))+

∑

p∈S,p 6=q1
mul(π1(p))+

∑

p∈P\S mul(π1(p))
= (n − l −k +2)+2(k −1)+ (l −k)
= n

Hence Pi 1 is well defined. Recall that mul(π1(q1)) = n − l − k + 2, But we as-
sumed that l +k ≤ f +2, that is, l +k −2 ≤ f . This means that mul(π1(q1)) ≥ n− f .
Therefore, according to Theorem 5.1.1, the robots located at q1 do not move if ac-
tivated at τ. It is easy to show that P ∼

?M
Pi 1, which implies that the robots of P that

are located at q1 do not move neither if activated at τ.
We construct the configurations Pi 2, . . . ,Pi k similarly to Pi 1 and we can prove

by using the same argument as above that the robots of P located at q2, . . . qk do
not move if activated at τ. This proves the lemma.

Corollary 5.1.1. Let P (τ),τ ∈ T be a configuration of robots endowed with ?M. If

(|L(P (τ))| + |{p ∈ L(P (τ)) | mul(p) > 1}|) ≤ f + 2 and byzantine robots never move

51

after τ; then all robots that are located at multiplicity points do not move if activated

after τ.

Proof. It suffices to prove that for all τ′ ≥ τ, (|L(P (τ′))| + |p ∈ L(P (τ′)) | mul(p) >
1}|) ≤ f +2 so that we can apply lemma 5.1.1 for each τ′ ≥ τ.

The proof proceeds by induction on the time instants τ′ ≥ τ. The basis is τ and
the claim is true according to Lemma 5.1.1.

For the inductive step, we assume the claim holds for time τ′− 1 ≥ τ and we
prove it for τ′. Hence, we suppose that (|L(P (τ′−1))|+ |p ∈ L(P (τ′−1)) | mul(p) >
1}|) ≤ f +2.

Recall that we assumed that byzantine robots never move after τ, hence they
do not move at τ′ − 1. The correct robots located at multiplicity points at τ′ − 1
do not move either according lemma 5.1.1 applied to the induction assumption.
Hence, only correct single robots can move in τ′−1.

When a single robot moves, it can either 1) remain single, 2) join an already
existing multiplicity point or 3) form a new multiplicity point with one or more
other single robots. In the first case, the movement of the robot does not affect
either of the two terms of the right side of the inequality which remains true at τ′.
For the second case, the number of locatition (represented by the term |L(P (τ′))|)
decreases by one (compared to |L(P (τ′−1))|) without affecting the number of mul-
tiplicity points (as indicated by the term |p ∈ L(P (τ′)) | mul(p) > 1}|). Thus, the
inequality holds also at τ′. For the last case, the movement of the robot increases
the number of multiplicity points by 1 while decreasing the number of positions
by at least 1 and the inequality is true for τ′.

The following lemma and corollary can be proved by using the same argu-
ments as the proofs of Lemma 5.1.1 and Corollary 5.1.1.

Lemma 5.1.2. Let P (τ) be a configuration of robots endowed with ∅M. If

|L(P (τ))| ≤ f +1; then all correct robots do not move if activated at τ.

Corollary 5.1.2. Let P (τ) be a configuration of robots endowed with ∅M. If

|L(P (τ))| ≤ f +1 and no Byzantine robot moves at any time τ′ ≥ τ; then all correct

robots do not move if activated at τ′.

5.2 Necessity of Strong Multiplicity Detection

In [32], Prencipe studied the problem of gathering in both ATOM and NTOM models
and showed that the problem is impossible without endowing robots with weak
multiplicity detectors (?M) that are able to detect if there is more than one robot

52

in a given location. Interestingly, when only convergence is requested, no mul-
tiplicity detection capability is needed to solve the problem (e.g. the algorithm
proposed in [17] where no such condition is assumed). In the following we prove
that even the weak multiplicity detection capability turns out to be insufficient
to achieve convergence when robots are prone to byzantine failures. That is, a
stronger form of multiplicity detection is necessary which allows robots to know
the exact number of robots that share the same location simultaneously. The re-
sult is proved for the weaker ATOM model, and thus directly extends to the NTOM

model.

The following lemma shows that no convergence is possible in presence of
byzantine robots without multiplicity detection.

Lemma 5.2.1. It is impossible to reach convergence in byzantine-prone environ-

ments in ATOMwithout multiplicity detection, even in the presence of a single byzan-

tine robot.

Proof. Take any initial configuration P (τ0) such that (i) |L(P (τ0))| ≥ f +1 and (ii)
not all correct robots are located in the same multiplicity point. Following Corol-
lary 5.1.2, if the adversary does not instruct any byzantine robot to move after τ0,
then correct robots will never move and convergence is prevented. This proves
our lemma.

The next lemma proves that even endowing robots with weak multiplicity de-
tectors (?M) does not allow them to achieve convergence.

Lemma 5.2.2. It is impossible to reach convergence in byzantine-prone environ-

ments in ATOM with weak multiplicity detection, even in the presence of a single

byzantine robot.

Proof. Fix an initial configuration P (τ0) such that: (i) |L(P (τ0))| + |{p ∈

L(P (τ0)) | mul(p) > 1}| ≤ f +2 and (ii) there are at least two positions in L(P (τ0))
contain at least two correct robots each. Hence, in accordance with Corol-
lary 5.1.1, if no byzantine robot is instructed to move after τ0, no correct robot
located at a multiplicity point will ever move which prevents convergence and
proves our lemma.

In the following chapter, we present three algorithms that rely on strong mul-
tiplicity detection and allow robots to achieve convergence in different synchrony
assumptions.

53

5.3 Lower Bound on the Number of Faulty Robots in the

ATOM[FS] Model

The following lemma shows that any convergence algorithm needs at least 2 f +1
robots in order to tolerate f byzantine robots even in the strongest model: the
fully-synchronous one. This lower bound extends to weaker models with respect
to atomicity and synchrony.

Theorem 5.3.1. In uni-dimensional robot networks, byzantine-resilient conver-

gence is impossible to solve under a fully-synchronous scheduler when n ≤ 2 f .

Proof. Assume for contradiction that convergence is possible when n ≤ 2 f . Since
the convergence of a single correct robot is trivial, we consider only the case when
the network contain at least two correct robots, which leads to n ≥ 4. Now fix a
configuration in which correct robots are spread over two distinct positions A and

B as follows: ⌈n− f
2 ⌉ correct robots are located at A and the remaining ⌊

n− f
2 ⌋ correct

robots are at B . The byzantine robots are also divided between A and B as follows:

⌊
f
2 ⌋ byzantine robots at A and ⌈

f
2 ⌉ byzantine robots at B . Since n ≤ 2 f , it follows

that n − f ≤ f . Hence, the total number of robots located at A is equal to

⌈
n− f

2 ⌉+⌊
f
2 ⌋ ≤ ⌈

f
2 ⌉+⌊

f
2 ⌋

≤ f

Using a similar argument we can show that B contains at most f robots
also. This implies that both A and B contain at least n − f robots. Assume
that the scheduler never instruct byzantine robots to move. Thus, according to
Lemma 5.1.1, then no correct robot will ever move and convergence is prevented.
This proves our lemma.

5.4 Lower Bound on the Number of Faulty Robots in the

ATOM[B(k)] Model

Theorem 5.4.1. In uni-dimensional robot networks, byzantine-resilient conver-

gence is impossible to solve under a k-bounded scheduler (k > 1) when n ≤ 3 f .

Proof. Our proof is based on a particular initial setting in which we prove that no
convergence algorithm is possible if a third or more of the robots are byzantine
when the scheduler is 2-bounded (and hency trivially k-bounded for any k ≥ 2).
We suppose the existence of at least two correct robots since the convergence of a
single correct robot is trivial. Thus f +2 < n ≤ 3 f .

54

Now assume that the correct robots are spread over two distinct points A and
B in a uni-dimensional space. Let P1 be an initial configuration in which ⌈

n− f
2 ⌉

correct robots are located at A and the remaining ⌊
n− f

2 ⌋ correct robots are at B .
Note that both A and B contain at least one correct robot each. All the byzantine
robots in P1 are located at A (refer to Figure 5.1(a)). Therefore, the total number

of robots at A (whether correct or not) is ⌈n− f
2 ⌉+ f which is at least equal to n − f

since n ≤ 3 f .

Figure 5.1: Impossibility of convergence under a k-bounded scheduler with n ≤

3 f , black robots are byzantine. (a) Configuration P1. (b) Configuration P2.

Thus, according to Lemma 5.1.1, when the correct robots at A are activated
they remain in their location (A) and do not move. Next, the adversary moves
the byzantine robots to B which leads to the configuration P2 (see figure 5.1(b)).
Again, the total number of robots at B in P2 is at least equal to n − f . Therefore,
the correct robots at B do not move neither upon their activation.

So by repeatedly alternating between the two configurations P1 and P2, the
adversary ensures that every robot is activated infinitely often in the execution yet
prevents convergence at the same time since robots at A and B remain always at
their initial positions and never converge.

5.5 Lower Bound on the Number of Faulty Robots in the

ATOM[AS] model

In this section we prove the fact that, when the number of robots in the net-
work does not exceed 5 f (with f of those robots possibly being byzantine), the
problem of byzantine resilient convergence is impossible to solve under a fully
asynchronous scheduler using a cautious algorithm. The result is proved for the

weaker ATOM model, and thus extends to the NTOM model.

55

In the case when n ≤ 3 f , we proved in the last section the impossibility of
convergence for k-bounded k-bounded, so the impossibility trivially extends to
asynchronous schedulers. Hence, in the following we assume that 3 f < n ≤ 5 f .

Let us start with some definitions. Our proof is based on a special kind of
configurations, referred in the following as trivalent, illustrated in Figure 5.2 and
described as follows. A configuration of robots is trivalent (Figure 5.2) iff the
robots can be divided into three subsets: Set A(P), SetB(P) and Set X (P) (or sim-
ply Set A,SetB and SetB) located at the three positions, say A,B and X respec-
tively with A 6= B and X ∈ [A,B] such that:

(i) Set A and SetB contain exactly f correct robots each.

(ii) Either (ii.a) |Set A| = f and ||SetB | − |Set X || ≤ 1 or (ii.b) |SetB | = f and
||Set A| − |Set X || ≤ 1. We say that the configuration is right trivalent in the
first case and left trivalent in the second case.

When the points A,B , X are distinct, the trivalent configuration is canonic,
otherwise it is degenerate (In this last case either X = A or X = B). Unless stated
otherwise, all trivalent configurations in this section are canonic.

If |Set X | = 0 then the configuration is bivalent. Moreover, if ||Set A|−|SetB || ≤

f , it said balanced.
In the remainder of this section we prove that starting from a trivalent configu-

ration, no cautious algorithm is able to achieve byzantine-resilient convergence in
uni-dimensional networks under an asynchronous scheduler when 3 f < n ≤ 5 f .
Our proof is by contradiction, we assume the existence of a cautious convergence
algorithm A when the robots are activated by a fully asynchronous scheduler.
Then we show that A satisfies certain properties when applied to trivalent config-
urations. These properties can be used by the adversary to prevent convergence,
contradiction !

Figure 5.2: Trivalent canonic configuration for (n = 9, f = 2)

The following two properties are satisfied by cautious protocols when applied
to trivalent configurations:

• Property 1: When a robot of Set A (resp. SetB) is activated in a right (resp.
left) trivalent configuration, its computed destination using a cautious algo-

56

rithm lies necessarily inside [A, X] (resp. [X ,B]). This property is proved in
Lemma 5.5.1.

• Property 2: The adversary is able to move the robots of Set X as close as
desired to location A (resp. B). This is proved by Lemmas 5.5.2, 5.5.3 and
5.5.4.

Based on this, the adversary first moves the robots of Set X very close to A

(using Property 2) and then activates the robots of Set A that remain in the neigh-
borhood of A (due to Property1). Afterward, it moves the intermediate robots of
Set X very close to B (using Property 2) and activates the robots of SetB which also
remain in the neighborhood of B (due to Property1). By repeating these actions
indefinitely, the adversary ensures that every robot is activated infinitely often in
the execution yet prevents convergence at the same time since robots at A and B

remain always arbitrarily close to their initial positions and never converge.

In the following, we prove Properties 1 and 2 by a sequence of lemmas, and
then give a formal presentation of the algorithm used by the adversary to prevent
any cautious protocol from achieving convergence. Let us start with Property 1:

Lemma 5.5.1. When a robot of Set A (resp. SetB) is activated in a right (resp. left)

trivalent configuration, its computed destination using a cautious algorithm lies

necessarily inside [A, X] (resp. [X ,B]).

Proof. We consider only right trivalent configurations, the other case being sym-
metric.

Figure 5.3: Illustration of Lemma 5.5.1, configuration P2

Fix P1 a right trivalent configuration and let P2 such that P2 ∼
∅M

P1, but where

the correct and byzantine robots are located differently in P2 (see Figure 5.3): all
robots located at B are byzantine (there are f such robots), and all robots inside
[A, X] are correct. Since the robot convergence algorithm is cautious, the diameter
of correct robots in P1 must never increase, hence all their calculated destination
points must lie inside [A, X]. Since P2 and P1 are indistinguishable to individ-
ual robots of Set A, the Look and Compute phases give the same result in the two
cases, which proves our lemma.

57

Property 2 says that if the number of robots in the network is lower or equal to
5 f then it always exists a judicious placement of the byzantine robots that permits
the adversary to make the intermediate robots in X move in the direction of B up
to a location that is as close as desired to B . To prove this property , we divide the
analysis in two cases depending on the parity of (n − f).

Case 1: (n − f) is even

To push the robots of Set X as close to A or B as wanted, the adversary uses algo-
rithm GoToBor der 1 (G2B1). Informally, the algorithm divides byzantine robots
between position X and the target border to which the adversary wants to push
the robots of Set X (e.g. B in what follows). The aim of the adversary is to maintain
the same number of robots in X and B (this is possible because n − f is even). We
prove that in this case, any cautious convergence algorithm makes the robots of
Set X move towards B . However, the distance traveled by them may be too small
to bring them sufficiently close to B . Since the scheduler is fully asynchronous,
it is authorized to activate the robots of Set X as often as necessary to bring them
close to B , as long as it does so for a finite number of times.

Algorithm 1 GoToBorder1 (G2B1)

Input: Bor der : the border towards which robots of Set X move (equal to A or B).
Input: d : a distance.

Actions:

Place n−3 f
2 byzantine robots at Bor der .

Place 5 f −n
2 byzantine robots at X .

while |X ,Bor der | > d do

Activate simultaneously all robots of Set X and make them move to their computed
destination D .

end while

Lemma 5.5.2. Let 3 f < n ≤ 5 f with (n − f) odd. If robots run a cautious conver-

gence algorithm then algorithm G2B1(Bor der,d) terminates for any d < |A,B | and

any Bor der ∈ {A,B}.

Proof. The placement of byzantine robots in G2B1 implies that initially, and for
3 f < n ≤ 5 f , the number of robots located at X and B is the same and is equal to
(n− f)/2 as illustrated in Figure 5.4.(a). Note that this initial configuration is triva-
lent, let us denote it by P1. Let us denote by P1 this initial trivalent configuration.
Assume w.l.o.g. that Bor der = B .

58

We prove the lemma by contradiction. We assume that the algorithm does not
terminate for a given input distance d0, and we prove that this leads to a contradic-
tion. The non-termination of the algorithm implies that there exists some distance
d1 ≤ d0 such that robots at X and B always remain distant by at least d1 from each
other, even if robots at X are activated indefinitely.

Consider an initial configuration P2 with P2 ∼
∅M

P1 but with a different distri-

bution of byzantine and correct robots (see Figure 5.4.(b)): correct robots are di-

vided equally between X and B : n− f
2 correct robots at X and n− f

2 others at B . Since
the robots are endowed with a cautious convergence algorithm, they are supposed
to converge to a single point located between X and B . By using the equivalence
between P1 and P2 we prove that this never happens, contradiction !

(a) Configuration P2 for (n =

13, f = 3)

(b) Configuration P2 for (n = 13, f = 3)

Figure 5.4: Illustration of lemma 5.5.2 (Fact2, (n − f) even)

The placement of byzantine robots and the choice of activated robots at each
cycle is divided into two parts. During even cycles, byzantine robots are placed at
point A and robots located at X are activated. During odd cycles, the scheduler
constructs a strictly symmetrical configuration by moving byzantine robots from
A to a point E with E > B and |B ,E | = |A, X |. In this case, the scheduler activates
robots at B .

In these conditions, activating robots at X ensures that they always remain
at a distance of at least d1 from those located at B (as in configuration P2). In-
deed, configurations P2 and P1 are equivalent and completely indistinguishable
to individual robots which must behave similarly in both cases (as the algorithm

59

is deterministic). By symmetry, the activation of robots at B during odd cycles also
ensures that minimum distance of d1 between the two groups of robots. Hence,
robots at X and B remain separated by a distance of at least d1 forever even if ac-
tivated indefinitely, which prevents the convergence of the algorithm and leads to
a contradiction. This proves our Lemma.

Case 2: (n − f) is odd

To prove Lemma 5.5.2, we relied on the symmetry induced by the placement of
byzantine robots. This symmetry is possible only because (n − f) is even. Indeed,
having the same number of robots in B and X implies that convergence responsi-
bility is delegated to both robots at X and at B : there is no asymmetry that a con-
vergence algorithm can exploit to get one of these two groups to play a role that
would be different from the other group. Robots of Set X and SetB have thus no
other choice but to move toward each other when they are activated. The distance
traveled at each activation must be large enough to ensure the eventual conver-
gence of the algorithm.

However, the situation is quite different when (n− f) is odd. Indeed, the num-
ber of robots is necessarily different in X and B , which means that one of the two
points has a greater multiplicity than the other. Then in this case there is no guar-
antee that a cautious convergence algorithm will order the robots of Set X to move
toward B when they are activated (the protocol could delegate the convergence
responsibility to robots of SetB). Nevertheless, we observe that whatever the cau-
tious algorithm is, if it does not move the robots that are located at the greatest
point of multiplicity, it must do so for those at the smallest one (and vice versa),
otherwise no convergence is ever possible. The convergence is thus either under
the responsibility of robots at the larger point of multiplicity or those at the smaller
one (or both).

This observation is exploited by Algorithm GoToBor der 2 (G2B2) that is pre-
sented as Algorithm 2, that tries the two possible cases to ensure its proper func-
tioning when confronted to any cautious algorithm. The algorithm forms the
larger point of multiplicity at B at one cycle, and the next cycle at X . Thus, point X

will be the larger point of multiplicity one time, and the smallest one the next time.
This implies that the robots of Set X must move towards B at least once every two
cycles. So by repeatedly alternating between the two configurations where robots
of Set X are successively the set of larger and smaller multiplicity, the adversary
ensures that they end up moving towards B . The full asynchrony of the scheduler
ensures that they are activated as many times as it takes to move them as close to
B as wanted, provided that the algorithm terminates.

60

Algorithm 2 GoToBorder2 (G2B2)
Input: Bor der : the border towards which the robots of Set X move (equal to A or B).
Input: d : a distance.

Actions:

Place n−3 f +1
2 byzantine robots at Bor der .

Place 5 f −n−1
2 byzantine robots at X .

while |X ,Bor der | > d do

Activate simultaneously all robots at X and make them move to their computed des-
tination D .
X ← D .
Move a byzantine robot from Bor der to X .
Activate simultaneously all robots at X and make them move to their computed des-
tination D .
X ← D

Move a byzantine robot from X to Bor der .
end while

Lemma 5.5.3. Let 3 f < n ≤ 5 f with (n − f) odd. If robots run a cautious conver-

gence algorithm then algorithm G2B2(Bor der,d) terminates for any d < |A,B | and

any Bor der ∈ {A,B}.

Proof. We consider in our proof only the case when Bor der = B since the other
case is symmetric. The placement of byzantine robots in G2B2 is such that the
multiplicity of X exceeds that of B by 1 during even cycles, and lowers it by 1 during
odd cycles. We denote by P1 the initial configuration (in which the multiplicity of
X is less than of B by 1 as illustrated in Figure 5.5.(a)).

We assume for the purpose of contradiction that G2B2 does not terminate for
some input distance d0. This means that robots of Set X and SetB remain always
distant from each others by a distance at least equal to d1 with d1 being some dis-
tance ≤ d0. The resulting execution in this case is denoted by E = {P1,P2,P3,P4, ...}.
A configuration Pi+1 is obtained from Pi by activating robots at X , letting them
execute their Move phases, and moving one byzantine robot from X to B or vice

versa.
We construct a configuration P ′

1 equivalent to P1 (P ′
1 ∼
♦M

P1) but where correct

robots are divided between X and B with ⌊(n − f)/2⌋ robots at X and ⌈(n − f)/2⌉
robots at B (see Figure 5.5.(b)). By definition, these robots must converge to a
point between X and B since they are endowed with a cautious convergence algo-
rithm. Byzantine robots are at A. Since P ′

1 and P1 are equivalent, the activation of
robots at X and the displacement of byzantine robots to the right of B will produce
a configuration P ′

1 that is equivalent to P1 by symmetry.

61

(a) Configuration P1 for (n =

12, f = 3)

(b) Configuration P ′
1 for (n = 12, f = 3)

Figure 5.5: Illustration of lemma 5.5.3 (Fact2, (n − f) odd)

This time, activated robots are those at B . By moving them to their calculated
destination points and by moving byzantine robots again to the left of X the sched-
uler can form a configuration P ′

2 which is equivalent to P2.

This process can be repeated: during odd cycles, byzantine robots are at the
left of X and robots at X are activated. During even cycles, the situation is sym-
metrical: byzantine robots are to the right of B and robots at B are activated. The
obtained execution E ′ = {P ′

1,P ′
2,P ′

3,P ′
4, ...} is equivalent to E , and robots at X and B

remain separated by a distance at least equal to d1 forever even if they are activated
indefinitely. This prevents the convergence of the convergence protocol while en-
suring fairness of activations, which contradicts the assumptions and proves our
Lemma.

We are now ready to prove Property 2.

Lemma 5.5.4. For n ≤ 5 f , ∀d < |A,B |, if the robots run a cautious convergence

algorithm, the fully distributed scheduler is able to move the robots of Set X into a

position ≥ B −d or ≤ A+d.

Proof. The proof follows directly from Lemmas 5.5.2 and 5.5.3.

62

Handling Degenerate Trivalent Configuration

The purpose of Algorithms G2B1 and G2B2 is to push the intermediate robots of
Set X as close as the adversary wants to the extremities of the network. For ease
of the description, we assume in the following that the adversary wants to push
them towards the extremity B . These two routines are then used by the adversary
to prevent the convergence of robots. For the algorithm of the adversary to work, it
is necessary to keep the robots of Set A, SetB and Set X separated from each other
and to avoid for example that the robots of Set X merge with those of SetB and
form a single point of multiplicity leading to a degenerate trivalent configuration.
Yet, functions G2B1 and G2B2 cannot prevent such a situation to appear because
the destinations are computed by the convergence algorithm which can order the
robots to move exactly towards B . If the distance to travel is too small (|X ,B | ≤∆),
then the adversary can not stop the robots of Set X before they arrive at B . The
following lemma states that we can recover from this situation and transform a
degenerate trivalent configuration to a canonic one having the same diameter. Its
proof make use of Lemma 5.5.6 proved immediately after.

Lemma 5.5.5. Let P be any degenerate trivalent configuration of n robots with 3 f <

n ≤ 5 f and diam(P) > ∆, the adversary is able to form a canonic trivalent config-

uration P ′ with diam(P ′) = diam(P) and Set A(P ′) = Set A(P),SetB(P ′) = SetB(P)
and Set X (P ′) = Set X (P).

Proof. Assume w.l.o.g. that P is right trivalent. The transformation into a canonic
trivalent configuration is done by the function Spl i nt (Set ,Bor der) described in
Algorithm 3 where the parameters Set and Bor der take in our case the values
Set X and B .

The adversary places the byzantine robots in such a way to obtain a balanced
bivalent configuration. Note that since P is trivalent, Set A and SetB contain each
exactly f correct robots. Hence, by putting all the f byzantine robots at A, the ad-
versary ensures that this location will contain exactly 2 f robots. Since 3 f < n ≤ 5 f ,
it follows that B contain between f +1 and 3 f robots. Hence, the difference be-
tween the number of robots at A and B is at most f . That is, the obtained config-
uration is balanced bivalent.

Consequently, if we activate the robots of Set X (which are located at B), they
will necessarily move towards A according to Lemma 5.5.6. Since the initial dis-
tance between A and B is greater than∆, the adversary is able to prevent the robots
of Set X from reaching A. By stopping these robots once they all travelled a dis-
tance equal to ∆ or reached their destination before, we ensure that the three sets
Set A, Set X and SetB are disjoint. Hence, the reached configuration P ′ is canonic
trivalent with the desired properties.

63

Algorithm 3 Function Split(Set, Border)
Require: |A,B | > M axδ

Variables:

Input: Bor der : is equal to A or to B .
Input: Set : the set of robots to move away from Bor der .
Opposi teBor der : is equal to B if Bor der = A, and equal to A if Bor der = B .

Actions:

Place all byzantine robots in Opposi teBor der .
Activate the robots of Set , and stop them at a point ∆ away from Bor der .

The following lemma proves that if a robot of a balanced bivalent configura-
tion is activated, it cannot stay in its position and moves toward the robots located
in the other point.

Lemma 5.5.6. Let P be a balanced bivalent configuration with L(P) = {A,B}. The

destination computed by any robot located at A (resp. B) using any cautious con-

vergence algorithm lies necessarily inside (A,B] (resp. [A,B)).

Proof. Denote by a and b the number of robots located at A and B respectively.
Since the configuration is balanced it holds that |a − b| ≤ f . Observe that since
we assume that the algorithm is cautious, all the computed destinations are nec-
essarily located inside [A,B]. Hence, to prove the lemma it suffices to show that
the destination of a robot located at A (resp. B) is distinct from A (resp. B). In the
following we consider only the robots located at A since the other case is symmet-
ric. Hence, we have to show that robots located at A move towards B upon their
activation. Assume to the contrary that their destination is A and let us separate
the analysis into three cases depending on the relationship between a and b. We
show that each case leads to a contradiction :

1. a > b : Let P2 be a configuration equivalent to P1 (P2 ∼
♦M

P1) with the follow-

ing placement of robots: At A there are f byzantine robots and a− f correct
ones, and at B are located b correct robots. Since Configurations P1 and P2

are indistinguishable to individual robots, the destinations computed in the
two cases are the same. So when the robots at A are activated, they do not
move. The next cycle, the adversary moves (a −b) byzantine robots from A

to B to obtain a configuration P3 with P3 ∼
♦M

P2. This time, the adversary

activates the robots at B which do not move neither since robots cannot

64

distinguish between P2 and P3 and must behave similarly in the two config-
urations as the algorithm is deterministic. Then, the adversary brings back
the (a −b) byzantine robots to A to get again the configuration P2 and then
activates the robots at A. The process repeats, and by placing these (a −b)
byzantine robots in one cycle at A and the next cycle at B , the adversary
prevents the convergence of the algorithm. This is a contradiction.

2. a < b : The argument is symmetric to Case 1.

3. a = b : In this case the configuration is perfectly symmetric. Hence, if the
activated robots at A do not move upon their activation, it is also the case
for robots located at B . Consequently, the robots never converge towards a
single location, contradiction !

The Lower Bound

Theorem 5.5.1. Starting from a trivalent configuration, no cautious algorithm is

able to achieve byzantine-resilient convergence in uni-dimensional networks under

an asynchronous scheduler when 3 f < n ≤ 5 f .

Proof. The algorithm of the adversary for the case when 3 f < n ≤ 5 f is given as
Algorithm 4 and it can prevent any cautious algorithm to converge.

Algorithm 4 Adversary Algorithm
Require: |A,B | > M axδ

Definitions:
d0: any distance that is strictly smaller than |A,B |/4, let d0 ←|A,B |/10.
G2B(Bor der,d) ≡ G2B1(Bor der,d) if (n − f) is even, ≡ G2B2(Bor der,d) if (n − f) is
odd.

Actions:

while true do

G2B(A,d0).
Activate the robots at A.
if the robots of SetX are at A, then Spl i t (Set X , A).
G2B(B ,d0).
Activate the robots at B .
if the robots of Set X are at B , then Spl i t (Set X ,B).
d0 ← d0/2

end while

65

Indeed, if for example the initial distance between robots at A and B is equal
to d = 10 ·d0, then these robots will always remain distant from each other by a
distance at least equal to:

d −2
∑

k≥0(d0/2k) = 10d0 −2∗2d0

= 6d0

The proof of algorithm 4 follows directly from Lemmas 5.5.1, 5.5.4 and 5.5.6.

Theorem 5.5.2. In uni-dimensional robot networks, byzantine-resilient conver-

gence is impossible to solve under a fully asynchronous scheduler when n ≤ 5 f .

Proof. We proved in Theorem 5.4.1 that convergence of robots is impossible in
unidimensional networks in the presence of byzantine failures when n ≤ 3 f .
Moreover, Theorem 5.5.1 says that no cautious algorithm is impossible when
3 f < n ≤ 5 f . Hence the theorem follows.

5.6 Necessary and Sufficient Conditions for Deterministic

Convergence

In this section we present the theoretical platform that we use to prove the cor-
rectness of our algorithms given in the following sections. We address the neces-
sary and sufficient conditions to achieve convergence of robots in systems prone
to byzantine failures. We define shrinking algorithms (algorithms that eventually
decrease the range of correct robots) and prove that this condition is necessary
for convergence even in fault-free environments. But shrinkingness alone is not
sufficient for convergence. Thus, we define cautious algorithms (algorithms that
ensure that the position of correct robots always remains inside the range of the
correct robots) and show that this condition, combined with the previous one, is
sufficient to reach convergence even in faulty systems.

5.6.1 Shrinking algorithms

By definition, convergence aims at asymptotically decreasing the range of possible
positions for the correct robots. The shrinking property captures this property. An
algorithm is shrinking if there exists a constant factor α ∈ (0,1) such that starting
in any configuration the range of correct robots eventually decreases by a multi-
plicative α factor. Note that to deal with the asynchrony of the model, the diam-
eter calculation takes into account both the positions and destinations of correct
robots.

66

Definition 16 (Shrinking Algorithm). An algorithm is shrinking if and only if ∃α ∈

(0,1) such that ∀τ,∃τ′ > τ, such that diam(U (t au′)∪D(τ′)) <α∗diam(U (τ)∪D(τ)),

where U (τ) and D(τ) are respectively the the multisets of positions and destinations

of correct robots.

Figure 5.6: Oscillatory effect of a shrinking algorithm

Note 5.6.1. In the atomic model, a robot position at a given time equal its computed

destination in the previous cycle. Hence, it suffices for an algorithm to be shrinking

in this model that at τ′ : diam(U (τ′)) <α∗diam(U (τ)).

Note 5.6.2. Note that the definition does not imply that the diameter always re-

mains smaller than α∗di am(U (τ)∪D(τ)) after τ′ (see Figure 5.6). Therefore, an

oscillatory effect is possible: the algorithm alternates between periods where the di-

ameter is increased and decreased. However, each increasing period is followed by a

decreasing one as depicted in Figure 5.6. It follows that a shrinking algorithm is not

necessarily convergent.

Lemma 5.6.1. Any algorithm that solves the byzantine convergence problem is nec-

essarily shrinking.

Proof. Assume w.l.o.g that the model is atomic. That is, for every time τ U (τ) =
D(τ).

67

Assume for contradiction the existence of a byzantine convergence algorithm
A that is not shrinking. This implies the existence of constant factor α ∈ (0,1), and
some time instant τ after which the diameter of correct robots running A is always
greater than α∗diam(U (τ)). Hence, for each point p in the uni-dimensional plane,
there exists infinitely many times τ′ ≥ τ at which the distance between p and some
correct robot in the network is greater than α∗diam(U (τ))

2 . Therefore, p cannot be the
convergence point of robots. Since p is arbitrary, robots never convergence using
A , contradiction !

5.6.2 Cautious algorithms

The following two lemmas state some properties of cautious algorithms.

Lemma 5.6.2. In the ATOM model, if an algorithm is cautious then

∀t ′ > t diam(U (τ′)) ≤ diam(U (τ))

Proof. Assume that it is not the case i.e. that diam(U (τ′)) > diam((U (τ)) for some
τ′ > τ. Then there exists two successive time instants (or cycles) τ1 and τ2 with
τ ≤ τ1 < τ2 ≤ τ′ such that the diameter of correct robots at τ2 is strictly greater
than the diameter at τ1 i.e. diam(U (τ2)) > diam(U (τ1)). Thus, there exists at least
one correct robot, say r1, that was inside diam(U (τ1)) at τ1, and moved outside it
at τ2. We prove that this is impossible.

Since cycles are atomic in ATOM, no robot moves between τ1 and the LOOK
phase of τ2, and the resulting snapshot of correct robots at this LOOK phase is
equal to U (τ1). Thus, the destination point calculated by r1 at τ2 is necessarily in-
side range(U (τ1)) since the algorithm is cautious. This contradicts the assumption
that r1 moves outside range(U (τ1)) at τ2, and the lemma follows.

Note 5.6.3. The preceding lemma does not hold for the NTOM model. Due to asyn-

chrony, the following type of scenario may occur. Assume three correct robots r1, r2

and r3. Assume without loss of generality that r1 and r2 are collocated at the same

position initially. r1 calculates some point, say pg , between it and r3 as its destina-

tion point and starts moving towards it. Assume that r1 is slow and before it reaches

pg , r3 has been activated several times until it becomes closer to r2 than pg . At this

moment, say τ1, the diameter is less than |r2, pg |.Then when r1 completes its Move

phase and reaches its destination pg , the diameter is equal to |r2,r1| = |r2, pg | that

is greater than the diameter at τ1.

So in the following lemma, we consider the range of correct robots and their
destinations and we prove that this range never decreases in the NTOM model if the
algorithm is cautious.

68

Lemma 5.6.3. In the NTOM model, if an algorithm is cautious then ∀τ′ >

τ,diam(U (τ′)∪D(τ′)) ≤ diam(U (τ)∪D(τ)).

Proof. Fix τ ∈T and assume for contradiction that ∃τ′ > τ such that diam(U (τ′)∪
D(τ′)) > diam(U (τ) ∪ D(τ)). This assumption implies that there exists at least
one correct robot, say ri , whose position and destination were both inside
r ang e(U (t)∪D(t)) at t , and whose position or destination is outside the range
at τ′. Formally, there exists some τ′ > t such that Ui (τ′) ∉ range(U (τ)∪D(τ)) or
Di (τ′) ∉ range(U (τ)∪D(τ)). Assume without loss of generality that ri is the only
robot in this case between τ and τ′, and distinguish the following two cases:

1. The destination point of ri is outside r ang e(U (t)∪D(t)) at τ′, that is Di (τ′) ∉
range(U (τ)∪D(τ)). But since no other robot was outside the range after τ,
and since Di (τ′) was calculated after τ using a cautious algorithm, Di (τ′) is
necessarily inside the range, which leads to a contradiction.

2. The position of ri is outside range(U (τ) ∪ D(τ)) at τ′, that is Ui (τ′) ∉

range(U (τ)∪D(τ)). But since the precedent position of ri and its destina-
tion were both inside range(U (τ)∪D(τ)), ri can only move between these
two points and stays necessarily inside range(U (τ)∪D(τ)), a contradiction.

Both cases lead to a contradiction which proves our lemma.

Theorem 5.6.1. Any algorithm that is both cautious and shrinking solves the con-

vergence problem in faulty robot networks.

Proof. We construct our proof for the most general model (the NTOMmodel). Since
the algorithm is shrinking then: ∃α ∈ (0,1) such that ∀τ ∈ T, there exists some
time τ′ > τ, such that di amU (τ′)∪D(τ′) < α∗diam(U (τ)∪D(τ)). And since it is
cautious, we have by Lemma 5.6.3 that ∀τ′ > τ : diam(U (τ′)∪D(τ′)) ≤ diam(U (τ)∪
D(τ)). So ∃α ∈ (0,1) such that ∀τ, there exists some time τ′ > τ, such that ∀τ′′ > τ′ :
diam(U (τ′′)∪D(τ′′)) <α∗diam(U (τ)∪D(τ)).

So given any initial configuration, by repeatedly decreasing the diameter of
correct robots by a factor of α, we can make them as close as we like. Formally
speaking, if we refer to the initial diameter of robots by σ0 (i.e. σ0 = diam(U (τ0)∪
D(τ0))), then for every ǫ> 0, there exists k > 0 such that σ0

αk < ǫ. So for every ǫ> 0,
there exists a time τǫ such that ∀τ ≥ τǫ : diam(U (τ)∪D(τ)) < ǫ. Define c(τ) to
be the point that is in the middle of range(U (τ)∪D(τ)) at time τ and let c be the
limit of c(τ) as τ gets to infinity. Clearly, by cautiousness we have that ∀τ ∈ T :
c ∈ range(U (τ)∪D(τ)). Hence, ∀ǫ > 0, there is a time τǫ such that ∀τ ≥ τǫ, ∀i ≤

m,distance(Ui (τ),c) < ǫ. Consequently, the algorithm is convergent.

69

5.7 Deterministic Convergence in ATOM[FS] Networks

In this section we propose a deterministic convergence algorithm and prove its
correctness and optimality in the fully-synchronous atomic model when robots
are endowed with strong multiplicity detectors ♦M . Our algorithm matches the
upper bound on the number of faulty robots proved in Theorem 5.3.1 (Chapter
5, Section 5.3) and requires that n > 2 f to be correct. Algorithm 5, similarly to
the approximate agreement algorithm in [24], uses two functions: trim f (P (τ)) and
mi d(P (τ)). The former removes the f largest and f smallest values from the mul-
tiset given in parameter. The latter returns the point that is in the middle of the
input range. Using Algorithm 5, each robot computes the middle point of the posi-
tions of the robots seen in its last Look phase ignoring the f largest and f smallest
positions.

Algorithm 5 Byzantine Tolerant Convergence in ATOM[FS].
Functions:
trim f (): removes the f largest and f smallest values from the multiset given in
parameter.
mi d(): returns the point in the middle of the range of points given in parameter.

Actions:
move towards mi d(trim f (P (τ)))

In the following we prove the correctness of Algorithm 5 in fully-synchronous
ATOM model. In order to show that Algorithm 5 is convergent we prove that it is
both cautious and shrinking.

5.7.1 Algorithm 5 is Cautious

First we propose a set of lemmas that will be further used in the construction of
the cautiousness proof of our algorithm. In the following we recall a result related
to the functions trim f () and r ang e proved in [24].

Lemma 5.7.1. [24] For n > 2 f : range(trim f (P (τ))) ⊆ range(U (τ))?

A direct consequence of the above property is that Algorithm 5 is cautious for
n > 2 f .

Lemma 5.7.2. Algorithm 5 is cautious for n > 2 f in the unidimensional ATOM[FS]
model.

70

Proof. The cautiousness property follows from Lemma 5.7.1: range(trim f (P (τ))) ⊆
range(U (τ)) implies that mi d(trim f (P (τ))) ∈ range(U (τ)).

5.7.2 Algorithm 5 is Shrinking

The following lemma addresses the shrinkingness property of Algorithm 5 in the
fully-synchronous ATOM model.

Lemma 5.7.3. Algorithm 5 is shrinking for n > 2 f in the unidimensional ATOM[FS]
model.

Proof. Denote by d0 the diameter of the initial configuration. At each cycle, all
robots move towards the same destination by a distance of at least ∆ unless they
reach their destination.

If all robots are at a distance smaller than ∆ from the common destination
point, gathering is achieved and the diameter is null. Otherwise, the robots that
are further than ∆ from the destination point approach it by at least ∆ so the diam-
eter decreases by at least ∆. Overall, the diameter of robots decreases by at least
factor of α= 1− (∆/d0) at each cycle and thus the algorithm is shrinking.

The correctness of Algorithm 5 follows directly from Lemmas 5.7.2 and 5.7.3
and Theorem 5.6.1:

Theorem 5.7.1. Algorithm 5 solves byzantine-resilient convergence for n > 2 f in

fully-synchronous uni-dimensional ATOM networks.

Actually, Algorithm 5 can do better than convergence. As explained in the
proof of Lemma 5.7.3, the range of correct robots decreases at each cycle by a con-
stant additive factor (∆) until it reaches 0. It follows that Algorithm 5 achieves
gathering.

Theorem 5.7.2. Algorithm 5 solves byzantine-resilient gathering for n > 2 f in

fully-synchronous uni-dimensional ATOM networks.

5.8 Deterministic Convergence in NTOM[B(k)] Networks

In this section we propose a deterministic convergence algorithm and prove its
correctness in the NTOM[B(k)] model when the robots are endowed with strong
multiplicity detectors ♦M . This algorithm works correctly for n > 3 f thus match-
ing the upper bound on the number of faulty robots under k-bounded schedulers
that was proved in Section 5.4 of the precedent chapter. The idea of Algorithm 6 is
as follows: each robot computes the center of the positions of the robots seen in

71

its last Look phase ignoring the f largest positions if they are larger than his own
position and the f smallest positions if they are smaller than his own position.

Algorithm 6 uses two functions, trimi
f

() and mi d(). The choice of the function

trimi
f

() makes the difference between this algorithm and Algorithm 5. Indeed, in
Algorithm 5 the trimming function removes the f largest and the f smallest values
from the multiset given in parameter. That is, the returned multiset does not de-
pend on the position of the calling robot. In Algorithm 6, trimi

f
() removes among

the f largest positions only those that are greater than the position of the calling
robot ri . Similarly, it removes among the f smallest positions only those that are
smaller than the position of the calling robot.

Formally, let mi ni ndexi be the index of the minimum position between Pi (τ)
and P f +1(τ) (if Pi (τ) < P f +1(τ) then mi ni ndexi is equal to i , otherwise it is equal
to f + 1). Similarly, let maxi ndexi be the index of the maximum position be-
tween Pi (τ) and Pn− f (τ) (if Pi (τ) > Pn− f (τ) then maxi ndexi is equal to i , oth-
erwise it is equal to n − f). trimi

f
(P (τ)) is the multiset consisting of positions

{Pmi ni ndexi
(τ),Pmi ni ndexi+1(τ), ...,Pmaxi ndexi

(τ)}. As in Algorithm 5, mi d() returns
the center point of the input range. The two functions are illustrated in Figure 5.7)
.

Figure 5.7: Illustration of functions trimi
f

() and mi d() for robots A and B in a sys-
tem of n = 11 robots with f = 3.

In the following we prove the correctness of Algorithm 6 in the NTOM[B(k)]
model. In order to show that Algorithm 6 converges, we prove first that it is cau-
tious then we prove that it satisfies the specification of a shrinking algorithm. Con-
vergence then follows from Theorem 5.6.1.

72

Algorithm 6 Byzantine Tolerant Convergence in NTOM[B(k)].
Functions:
- trimi

f
(P (τ)): removes up to f largest positions that are larger than Pi (τ) and up

to f smallest positions that are smaller than Pi (τ) from the multiset P (τ) given
in parameter.
- mi d(): returns the center point of the input range.

Actions:
move towards mi d(trimi

f
(P (τ)))

5.8.1 Algorithm 6 is Cautious

In this section we prove that Algorithm 6 is cautious when for n > 3 f . The follow-
ing lemma states that the range of the trimmed multiset trimi

f
(P (τ)) is contained

in the range of correct positions.

Lemma 5.8.1. Let ri be a correct robot executing Algorithm 6, it holds for n > 3 f

that

range(trimi
f (P (τ))) ⊆ range(U (τ))

Proof. We prove that for any correct robot ri , the following conditions hold:

1. ∀τ ∈T : mi n(trimi
f

(P (τ))) ∈ range(U (τ)).

2. ∀τ ∈T : max(trimi
f

(P (τ))) ∈ range(U (τ)).

1. By definition, mi n(trimi
f

(P (τ))) = mi n{Pi (τ), . . . ,P f +1(τ)}. Hence prov-
ing Property (1) reduces to proving Pi (τ) ∈ range(U (τ)) and P f +1(τ) ∈

r ang eU (τ). Similarly, proving property (2) reduces to proving Pi (τ) ∈

range(U (τ)) and Pn− f (τ) ∈ range(U (τ)).

• Pi (τ) ∈ range(U (τ)) directly follows from the assumption that robot ri

is correct.

• P f +1(τ) ∈ range(U (τ)). Suppose the contrary: there exists some time
instant τ such that P f +1(τ) ∉ range(U (τ)) and prove that this leads to a
contradiction. If P f +1(τ) ∉ range(U (τ)) then either P f +1(τ) < U1(τ) or
P f +1(τ) >Um(τ).

– If P f +1(τ) < U1(τ) then there are at least f + 1 positions P1(τ),
P2(τ), . . . , P f (τ), P f +1(τ) that are smaller than U1(τ) which is the
first correct position in the network at time τ. This means that

73

there would be at least f +1 Byzantine robots in the system. But
this contradicts the assumptions that at most f byzantine robots
are present in the system.

– If P f +1(τ) >Um(τ) then since n > 3 f there are more than f posi-
tions P f (τ), P f +1(τ), . . . , Pn(τ) that are greater than Um(τ), which
is the last correct position in the system at time τ. This also leads
to a contradiction.

2. The property is symmetric to the precedent one and can by proved using the
same argument.

A direct consequence of the above property is that correct robots always com-
pute a destination within the range of positions held by correct robots, whatever
the behavior of byzantine ones. Thus, the diameter of positions held by correct
robots never increases. Consequently, the algorithm is cautious. The formal proof
is proposed in the following lemma.

Lemma 5.8.2. Algorithm 6 is cautious for n > 3 f .

Proof. According to Lemma 5.8.1, range(trimi
f

(P (τ))) ⊆ range(U (τ)) for each cor-

rect robot ri , thus mi d(trimi
f

(P (τ))) ∈ range(U (τ)). It follows that all destina-
tions computed by correct robots are located inside range(U (τ)) which proves the
lemma.

5.8.2 Algorithm 6 is Shrinking

In this section we prove that Algorithm 6 is shrinking. The following lemma states
that a robot can not compute a destination that is far from its current position by
more than half the diameter of correct positions. More specifically, a robot located
on one end of the network can not move to the other end in a single movement.

Interestingly, the property of lemma 5.8.3 is guaranteed even though robots are
not able to figure out the range of correct positions nor to compute their diameter.
The bound on the movements of robots is achieved by taking into account the
position of the calling robot when computing the trimming function.

Lemma 5.8.3. For every correct robot ri , for every time τ ∈ T, if ri computes its

destination point at time τ, then |U i
i

(τ),Di (τ)| ≤ diam(U i (τ))
2 .

74

Proof. Suppose for contradiction that |U i
i

(τ),Di (τ)| > diam(U i (τ))
2 for some robot ri

at time τ. Assume without loss of generality that U i
i

(τ) < Di (τ) (the other case is
symmetric). This means that U i

i
(τ) > Di (τ)−diam(U i (τ))/2. We prove that this is

impossible.
Let p denotes the point U i

i
(τ). Hence p ∈ range(trimi

f
(P (τ))) with p < Di (τ)

and |p,Di (τ)| > diam(U i (τ))/2, Since Di (τ) is the center of trimi
f

(P (τ)) it fol-

lows that there must exist another point q ∈ trimi
f

(P (τ)) with q > Di (τ) such that

|Di (τ), q | > diam(U i (τ))/2.
Hence,

|p, q| = |p,Di (τ)|+ |Di (τ), q|

> diam(U i (τ))/2+diam(U i (τ))/2
> diam(U i (τ))

Since both p and q belong to trimi
f

(P (τ)), it follows that diam(trimi
f

(P (τ))) ≥

|p, q | > diam(U i (τ)). This contradicts lemma 5.8.1 which states that
range(trimi

f
(P (τ))) ⊆ range(U (τ)).

The following lemmas describe some important properties on the destination
points computed by correct robots which will be used in proving the shrinkingness
of Algorithm 6. These properties are satisfied whatever the positions of byzantine
robots are, and thus they capture the limits of the influence of byzantine robots on
the actions undertaken by correct robots.

The next lemma shows that the correct positions {U f +1(τ), ...,Um− f (τ)} are al-
ways included in the trimmed range (the output range of the function trimi

f
())

regardless of the positions of byzantine robots.

Lemma 5.8.4. It holds that range(trimi
f

(U (τ))) ⊆ range(trimi
f

(P (τ))).

Proof. We prove that:

1. ∀t U f +1(τ) ∈ range(trimi
f

(P (τ))).

2. ∀t Um− f (τ) ∈ range(trimi
f

(P (τ))).

1. Suppose that U f +1(τ) ∉ range(trimi
f

(P (τ))). Then either

U f +1(τ) < min(trimi
f (P (τ)))

or
U f +1(τ) > max(trimi

f (P (τ)))

75

• If U f +1(τ) < min(tr i m f (P (τ))) then there are at least f + 1 positions
{U1(τ), ...,U f +1(τ)} which are smaller than min(tr i m f (P (τ))). This
contradicts the definition of tr i m f (P (τ)) (at most f among the small-
est elements of P (τ) are removed).

• If U f +1(τ) > max(tr i m f (P (τ))) and since |U (τ)| > 2 f (because n > 3 f),
then there are at least f + 1 positions in U (τ) ({U f +1(τ), ...,U2 f +1(τ)})
that are greater than max(tr i m f (P (τ))), which also leads to a contra-
diction.

2. The property is symmetric to the precedent one.

Let D(τ) be the set of destinations computed with Algorithm 6 in systems with
n > 3 f , and let U D(τ) be the union of U (τ) and D(τ). If a robot ri executed
its last Look phase at time τ′ ≤ τ, then U D i (τ) = U D(τ′). The following lemma
proves that the destination computed by each correct robot ri is always within the
range [(mi n(U D i (τ))+U i

m− f
(τ))/2,(U i

f +1(τ)+max(U D i (τ)))/2] independently of
the positions of byzantine robots.

Lemma 5.8.5. The following properties hold:

∀i , each destination point calculated by a correct robot ri at time τ is (1) smaller

than (U i
f +1(τ)+max(U D i (τ)))/2 and (2) greater than (mi n(U D i (τ))+U i

m− f
(τ))/2.

Proof. Let d1 be the distance between U i
f +1(τ) and max(U D i (τ)).

1. We suppose the contrary: there exists some calculated destination point Di

by some correct robot ri at time τ such that

Di > (U i
f +1(τ)+max(U D i (τ)))/2

and we prove that this leads to a contradiction.

Di > (U i
f +1(τ)+max(U D i (τ)))/2

implies that U i
f +1(τ) < Di −d1/2. And by Lemma 5.8.4, U i

f +1(τ) is inside

range(trimi
f (P i (τ)))

which means that there is a position inside range(trimi
f

(P i (τ))) which
is smaller than Di − d1/2. Hence there must exists a position inside

76

range(trimi
f

(P i (τ))) say p, such that p > Di + d1/2 because Di is the

center of trimi
f

(P i (τ)). U i
f +1(τ) < Di − d1/2 and p > Di + d1/2 implies

that |U f +1(τ), p| > |U f +1(τ),max(U D i (τ)| which in turn implies that p >

max(U D i (τ)). But p ∈ range(trimi
f

(P i (τ))), it follows that

max(trimi
f (P i (τ))) > max(U D i (τ))

which contradicts Lemma 5.8.1 and thereby proves our lemma.

2. Symmetric to the precedent property.

Lemma 5.8.6. Let S(τ) be a multiset of f +1 arbitrary elements of U (τ). The follow-

ing properties hold: (1) ∀t , U f +1(τ) ≤ max(S(τ)) and (2) ∀t , Um− f (τ) ≥ min(S(τ))

Proof. 1. Assume the contrary: U f +1(τ) > max(S(τ)). This means that U f +1(τ)
is strictly greater than at least f +1 elements of U (τ), which leads to a con-
tradiction (U f +1(τ) is by definition the (f +1)-th correct position in U (τ)).

2. The property is symmetric to the precedent.

The next lemma generalizes and extends the properties of Lemmas 5.8.4 and
5.8.5 (proven for a fixed time instant) to a time interval. It describes bounds on
the destination points computed by correct robots during a time interval [τ1,τ2].
It states that if there is a subset of f +1 robots whose positions are less than Smax

during [τ1,τ2], then all destinations computed during [τ1,τ2] by all correct robots
in the network are necessarily smaller than (Smax +M ax(U D(τ1)))/2.

Lemma 5.8.7. Let a time τ2 > τ1 and let S(τ) be a multiset of f +1 arbitrary elements

in U (τ). If ∀p ∈ S(τ) and ∀τ ∈ [τ1,τ2] p ≤ Smax then all calculated destination

points at time interval [τ1,τ2] are smaller than (Smax +M ax(U D(τ1)))/2.

Proof. By definition of Smax we have that ∀τ ∈ [τ1,τ2],max(S(τ)) ≤ Smax . Accord-
ing to Lemma 5.8.6, ∀τ ∈ [τ1,τ2] U f +1(τ) ≤ max(S(τ)). So ∀τ ∈ [τ1,τ2], U f +1(τ) ≤
Smax .

By Lemma 5.8.5, each calculated destination point by each correct robot
ri at time interval [τ1,τ2] is smaller than (U i

f +1(τ) + max(U D(τ)))/2, so be-
cause U f +1(τ) ≤ Smax these destinations points are also smaller than (Smax +

max(U D(τ)))/2 . Since the algorithm is cautious, ∀i ,∀τ ∈ [τ1,τ2] max(U D(τ)) ≤
max(U D(τ1)) and the lemma follows.

77

The next Lemma states that if some calculated destination point is in the
neighborhood of one end of the network, then a majority of m − f correct robots
are necessarily located in the neighborhood of this end.

Lemma 5.8.8. If some correct robot ri executes its Look phase at time τ and then

compute (in the Compute phase which immediatly follows) a destination Di such

that Di < mi n(U D(τ))+b (with b any distance smaller than diam(U D(τ))/2), then

at t, there are at least m− f correct robots whose positions are (strictly) smaller than

mi n(U D(τ))+2b.

Proof. We prove first that at τ, max(tr i mi P (τ)) ≤ mi n(U D(τ))+ 2b. According
to Lemma 5.8.1, mi n(trimi

f
(P (τ))) ≥ mi n(U D(τ)). And we have by hypothesis

that Di < mi n(U D(τ))+b. This gives us Di < mi n(tr i mi P (τ))+b. But Di is the
center of trimi

f
(P (τ)) which means that |Di ,mi n(trimi

f
(P (τ)))| must be equal to

|Di ,max(trimi
f

(P (τ)))|. Thus, max(trimi
f

(P (τ))) < Di +b. And since by hypothe-
sis Di < mi n(U D(τ))+b, we have

max(trimi
f (P (τ))) < mi n(U D(τ))+2b

which means that at τ there are at most f correct positions greater
than mi n(U D(τ)) + 2b, and by definition no correct position is smaller than
mi n(U D(τ)). It follows that at τ, the range [mi n(U D(τ)), mi n(U D(τ))+2b) con-
tains at least m − f correct positions.

We are now ready to give the proof of shrinkingness of our algorithm in the
NTOM[B(k)] model. The general idea of the proof is to show that the destination
points computed by correct robots are located either around the middle of the
range of correct positions or/and in the neighborhood of only one end of this
range.

If all computed destinations are located around the middle of the range of cor-
rect robots then the diameter of this range decreases and the algorithm is shrink-
ing. Otherwise, if some computed destinations are located in the neighborhood of
one end of the range, it is shown that there is a time at which no correct robot will
be in the neighborhood of the other end of the range, which leads again to a de-
crease in the range of correct positions and shows that the algorithm is shrinking.

Lemma 5.8.9. Algorithm 6 is shrinking for n > 3 f in the NTOM[B(k)] model for any

k > 0.

Proof. Let U (τ0) = {U1(τ0), ...,Um(τ0)} be the configuration of correct robots at ini-
tial time τ0 and D(τ0) = {D1(τ0), ...,Dm(τ0)} the multiset of their calculated desti-
nation points at the same time τ0 and U D(τ0) is the union of U (τ0) and D(τ0).

78

Let τ1 be the first time at which all correct robots have been activated and exe-
cuted their Look and Compute phase at least once since τ0 (U (τ1) and D(τ1) are
the corresponding multisets of positions and destinations). Assume that robots
are ordered from left to right and define d0 and d1 as their diameters at τ0 and τ1

respectively. Since the model is non-atomic, the diameter calculation takes into
account both the positions and the destinations of robots. So d0 = diam(U D(τ0))
and d1 = diam(U D(τ1)). Let b be any distance that is smaller than d0/4, for exam-
ple take b = d0/10.

We consider the actions of correct robots after τ1 and we separate the analysis
into two cases:

• Case A: All calculated destinations by all correct robots after τ1 are inside
[mi n(U D(τ0))+ b,max(U D(τ0))− b]. So when all correct robots are acti-
vated at least once, their diameter decreases by at least min{2∆,2b = d0/5}.
Thus by setting α1 = max{1−2∆/d0,4/5}, the algorithm is shrinking.

• Case B: Let τ2 > τ1 be the first time when a robot, say ri , execute a Look
phase such that the Compute phase that follows compute a destination
point, say Di , that is outside [mi n(U D(τ0))+b,max(U D(τ0))−b]. This im-
plies that either (Di < mi n(U D(τ0))+b) or (Di > max(U D(τ0))−b). Since
the two cases are symmetric, we consider only the former which implies
according to Lemma 5.8.8 that the range [mi n(U D(τ0)),mi n(U D(τ0))+2b]
must contain at least m − f correct positions.

If some robots among these m − f robots are executing a Move phase, their
destination points have necessarily been calculated after τ0 (since at τ1 each
robot has been activated at least once). And we have by lemma 5.8.3 that
the distance between each robot and its destination can not exceed half the
diameter, so we conclude that at τ2 the destination points of these m − f

robots are all inside [mi n(U D(τ0)),mi n(U D(τ0))+b +d0/2].

Let S(τ2) be a submultiset of U D(τ2) containing the positions and destina-
tions of f +1 arbitrary robots among these m − f whose positions and des-
tinations are inside

[mi n(U D(τ0)),mi n(U D(τ0))+b +d0/2]

So max(S(τ2)) ≤ mi n(U D(τ0))+b +d0/2. And since we chose b < d0/4, we
have max(S(τ2)) < max(U D(τ0))−3d0/4. Let τ3 ≥ τ2 be the first time each
correct robot in the system has been activated at least once since τ2. We
prove in the following that at τ3, max(S(τ3)) < max(U D(τ0))−3d0/2k(f +1)+2.

79

To this end we show that the activation of a single robot of S(τ) can not re-
duce the distance between the upper bound of max(S) and max(U D(τ0))
by more than half its precedent value, and since the scheduler is k-bounded,
we can guarantee that this distance at τ3 is at least equal to 3d0/2k(f +1)+2.

According to Lemma 5.8.5, if some robot ri calculates its destination Di at
time t ∈ [τ2,τ3], Di ≤ (U f +1(τ)+max(U D(τ)))/2. But U f +1(τ) ≤ max(S(τ))
by Lemma 5.8.6 and max(U D(τ)) ≤ max(U D(τ0)) due to cautiousness. This
gives us Di ≤ (max(S(τ)+max(U D(τ0)))/2. Therefore, an activation of a
single robot in S(τ) to execute its Compute phase can reduce the distance
between M ax(U D(τ0)) and max(S(τ)) by at most half its previous value.

So at τ3, after a maximum of k activations of each robot in S(τ), we have
max(S(τ3)) ≤ M ax(U D(τ0))−3d0/2k(f +1)+2, and by Lemma 5.8.7, all calcu-
lated destinations by all correct robots between τ2 and τ3 are less than or
equal to M ax(U D(τ0))−3d0/2k(f +1)+3.

Since robots are guaranteed to move toward their destinations by at least
a distance ∆ before they can be stopped by the scheduler, after τ3, no robot
will be located beyond M ax(U D(τ0))−mi n{∆,3d0/2k(f +1)+3}. Hence by set-
ting α= max{α1,1−∆/d0,1−3/2k(f +1)+3} the lemma follows.

The convergence proof of Algorithm 6 directly follows from Lemmas 5.8.9 and
5.8.2 and Theorem 5.6.1.

Theorem 5.8.1. Algorithm 6 solves the byzantine convergence problem for n > 3 f

in the NTOM[B(k)] model for any k > 0.

5.9 Deterministic Convergence in NTOM[AS] Networks

In this section, we propose a deterministic convergence algorithm and prove its
correctness in the atomic fully asynchronous model NTOM[AS] when there are at
least 5 f +1 robots.

Algorithm Description The idea of our algorithm is based on three mecha-
nisms: (1) a trimming function for the computation of destinations, (2) location
dependency and (3) an election procedure. The purpose of the trimming func-
tion is to ignore the most extreme positions in the network when computing the
destination. Robots move hence towards the center of the remaining positions.

80

Consequently, the effect of Byzantine robots is canceled since they cannot drag
the correct robots away from the range of correct positions.

Location dependency affects the computation of the trimming function such
that the returned result depends on the position of the calling robot. This leads to
interesting properties on the relation between the position of a robot and its des-
tination that are critical to convergence. The election procedure instructs to move
only the robots located at the two extremes of the network. Thus, by the combined
effect of these three mechanisms, as the algorithm progresses, the extreme robots
come together towards the middle of the range of correct positions which ensures
the eventual convergence of the algorithm.

The algorithm 7 uses three functions as follows. The trimming function
trimi

2 f
() removes among the 2 f largest positions of the multiset given in parame-

ter only those that are greater than the position of the calling robot ri . Similarly,
it removes among the 2 f smallest positions only those that are smaller than the
position of the calling robot. It is clear that the output of trimi

2 f
() depends on the

position of the calling robot. Formally, let mi ni ndexi be the index of the min-
imum position between Pi (τ) and P2 f +1(τ) (if Pi (τ) < P2 f +1(τ) then mi ni ndexi

is equal to i , otherwise it is equal to 2 f +1). Similarly, let maxi ndexi be the in-
dex of the maximum position between Pi (τ) and Pn−2 f (τ) (if Pi (τ) > Pn−2 f (τ) then
maxi ndexi is equal to i , otherwise it is equal to n −2 f). trimi

2 f
(P (τ)) is the mul-

tiset consisting of positions {Pmi ni ndexi
(τ),Pmi ni ndexi+1(τ), . . . ,Pmaxi ndexi

(τ)}.
The function mi d() simply returns the median point of the input range. The

two functions are illustrated in Figure 5.8).
The election function returns true if the calling robot is allowed to move. Only

the robots that are located at the extremes of the networks are allowed to move,
that is those whose position is either ≤ P f +1(τ) or ≥ Pn− f (τ).

Figure 5.8: Illustration of functions trimi
2 f

() and mi d() in a system of (n = 16, f = 3)
robots.

81

Algorithm 7 Byzantine Tolerant Convergence in NTOM[AS]
Functions:
trimi

2 f
(P (τ)): removes up to 2 f largest positions that are larger than Pi (τ) and

up to 2 f smallest positions that are smaller than Pi (τ) from the multiset P (τ)
given in parameter.
mi d(): returns the point that is in the middle of the range of points given in
parameter.
el ected() ≡ ((Pi (τ) ≤ P f +1(τ)) or (Pi (τ) ≥ Pn− f (τ))). This function returns true if
the calling robot is allowed to move.

Actions:
if el ected() move towards mi d(trimi

2 f
(P (τ)))

In the following we prove the correctness of Algorithm 7 in the NTOM[AS] model
by showing that it is both shrinking and cautious.

5.9.1 Algorithm 7 is Cautious

In this section we prove that Algorithm 7 is a cautious algorithm (see Definition
14) for n > 5 f . The following lemma states that the range of the trimmed multiset
trimi

2 f
(P (τ)) is contained in the range of correct positions.

Lemma 5.9.1. Let ri be a correct robot executing Algorithm 7, it holds that

∀τ,range(trimi
2 f (P (τ))) ⊆ range(U (τ))

Proof. We prove that for any correct robot, ri , the following conditions hold:

1. ∀τ, mi n(trimi
2 f

(P (τ))) ∈ range(U (τ)).

2. ∀τ, max(trimi
2 f

(P (τ))) ∈ range(U (τ)).

1. By definition, mi n(trimi
2 f

(P (τ))) = mi n{Pi (τ),P2 f +1(τ)}. Hence prov-
ing Property (1) reduces to proving Pi (τ) ∈ range(U (τ)) and P2 f +1(τ) ∈

range(U (τ)).

a) Pi (τ) ∈ range(U (τ)) directly follows from the assumption that robot ri

is correct.

b) P2 f +1(τ) ∈ range(U (τ)). Suppose the contrary: there exists some time
instant τ such that P2 f +1(τ) ∉ range(U (τ)) and prove that this leads to

82

a contradiction. If P2 f +1(τ) ∉ range(U (τ)) then either P2 f +1(τ) <U1(τ)
or P2 f +1(τ) >Um(τ).

i. If P2 f +1(τ) < U1(τ) then there are at least 2 f +1 positions {P1(τ),
P2(τ), . . . , P2 f (τ), P2 f +1(τ)} that are smaller than U1(τ) which is
the first correct position in the network at time τ. This means that
there would be at least 2 f +1 Byzantine robots in the system. But
this contradicts the assumption that at most f Byzantine robots
are present in the system.

ii. If P2 f +1(τ) > Um(τ) then since n > 5 f there are more than 3 f

positions {P2 f +1(τ), ...,Pn(τ)} that are greater than Um(τ), which is
the last correct position in the system at time τ. This also leads to
a contradiction.

2. The property is symmetric to 2) and can be proved using the same argu-
ment.

A direct consequence of the above property is that correct robots always com-
pute a destination within the range of positions held by correct robots, whatever
the behavior of Byzantine ones. Thus, the diameter of positions held by correct
robots never increases. Consequently, the algorithm is cautious. The formal proof
is proposed in the following lemma.

Lemma 5.9.2. Algorithm 7 is cautious for n > 5 f .

Proof. According to Lemma 5.9.1, range(trimi
2 f

(P (τ))) ⊆ range(U (τ)) for each cor-

rect robot ri , thus mi d(trimi
2 f

(P (τ))) ∈ range(U (τ)). It follows that all destinations
computed by correct robots are located inside range(U (τ)) which proves the cau-
tiousness property.

5.9.2 Algorithm 7 is Shrinking

The following lemma proves that the only robots that can be elected are those
located at the extremes of the network, namely those whose position is either less
equal than U f +1(τ) or greater equal than Um− f (τ). The activation of these robots
move them away from the extremes of the network, thereby reducing the diameter
of positions held by correct robots which leads to convergence.

83

Lemma 5.9.3. If some correct robot ri is activated at time τ, then either Ui (τ) ≤
U f +1(τ) or Ui (τ) ≥Um− f (τ) where m is the number of correct robots in the network

and Ui (τ) denotes the position of correct robot ri at τ;

Proof. By definition of the algorithm, a robot is activated only if its position is ei-
ther ≤ P f +1(τ) or ≥ Pn− f (τ). To prove the lemma, it suffices then to show that
P f +1(τ) ≤U f +1(τ) and Pn− f (τ) ≥Um− f (τ):

To prove that P f +1(τ) ≤ U f +1(τ), we suppose to the contrary that P f +1(τ) >
U f +1(τ). In this case, P f +1(τ) would be strictly greater than all the positions
{U1(τ), ...,U f +1(τ)}, which contradicts the definition of P f +1(τ) as the (f +1)-th po-
sition in the network. This proves that P f +1(τ) ≤U f +1(τ) and the same argument
is used to prove that Pn− f (τ) ≥Um− f (τ), since the two cases are symmetric.

The following lemma proves an important property on the relationship be-
tween the position of a robot and its computed destination. Indeed, knowing the
position Ui (τ) held by a correct robot ri at time τ, it is possible to give bounds on
the possible value of its destination point Di (τ). Interestingly, this bound holds
irrespective of the positions of Byzantine robots and the actions of the adversary.

Formally, consider any initial configuration at time τ0, such that U (τ0) and
D(τ0) are respectively the multiset of positions and destinations of correct robots
at time τ0. Define U D(τ0) to be the union of U (τ0) and D(τ0). By considering the
cycles started by correct robots after τ0, the following property holds:

Lemma 5.9.4. For each correct robot ri that starts a cycle after τ0, the following

inequalities hold:

Di (τ) ∈ [
Ui (τ)+Mi n(U D(τ0))

2
,
Ui (τ)+M ax(U D(τ0))

2
]

.

Proof. The proof is twofold. First, we show that (1) Di (τ) ≥ (Ui (τ) +
Mi n(U D(τ0)))/2. Then, we prove the symmetric property (2) Di (τ) ≤ (Ui (τ) +
M ax(U D(τ0)))/2.

1. Di (τ) ≥ (Ui (τ)+Mi n(U D(τ0)))/2 :

Assume towards contradiction that for some robot ri that start a cycle at
time τ1 ≥ τ0, there exists a time τ≥ τ1 in this cycle such that:

Di (τ) <
Ui (τ)+mi n(U D(τ0))

2

84

Note that Ui (τ1) ≥Ui (τ) because if robot ri moves between τ1 and τ, it be-
comes closer to its destination Di (τ). Thus:

Di (τ) <
Ui (τ1)+mi n(U D(τ0))

2
. . . (1)

This means that |mi n(U D(τ0)),Di (τ)| < |Di (τ),Ui (τ1)|. Denote by d the
distance between Ui (τ1) and Di (τ). Note that Di (τ) <Ui (τ1).

The computation of Di (τ) by ri is based on the configuration of the network
as last seen by robot ri . That is, the configuration of the system at the begin-
ning of its cycle P (τ1). This implies that:

Di (τ) = mi d(trimi
2 f (P (τ1))) . . . (2)

We prove that (1) and (2) combined lead to a contradiction.

The location dependency property of the trimming function implies that
Ui (τ1) ∈ trimi

2 f
(P (τ1)).

So, up to this point we proved that there exists a point Ui (τ1) ∈ trimi
2 f

(P (τ1))
such that Ui (τ1) > Di (τ) and |Ui (τ1),Di (τ)| = d .

But since by (2), Di (τ) is the center of trimi
2 f

(P (τ1)), there must exists an-

other point q ∈ trimi
2 f

(P (τ1)), such that q < Di (τ) and |q,Di (τ)| = d .

But we observed from (1) that |mi n(U D(τ0)),Di (τ1)| < d , which implies that
|mi n(U D(τ0)),Di (τ1)| < |q,Di (τ)|. This means that q < mi n(U D(τ0)). But
q ∈ trimi

2 f
(P (τ1)), so mi n(trimi

2 f
(P (τ1))) < mi n(U D(τ0)). This contradicts

lemma 5.9.1, which proves the first part of our lemma.

2. (2) Di (τ) ≤ (Ui (τ)+M ax(U D(τ0)))/2 : The property is symmetric to (1) and
can be proved using the same argument.

Let S be a subset of correct robots, and define U DS(τ) to be the multiset of
their positions and destinations at time τ.

Lemma 5.9.5. If |S| ≥ m − 2 f and there exists a time τ1 ≥ τ0 such that for each

τ > τ1, max(U DS(τ)) ≤ max(U D(τ0))− b, then all computed destinations by all

correct robots in cycles that start after τ1 are ≤ max(U D(τ0))−b/2.

85

Proof. Let ri be any correct robot that computes its destination Di in a cycle
started after τ1, say at τ. We prove in the following that Di ≤ max(U D(τ0))−b/2:

First, observe that since max(U DS(τ)) ≤ max(U D(τ0))−b and |S| ≥ m −2 f >

2 f , then

mi n(trimi
2 f (P (τ)) ≤ max(U D(τ0))−b

Otherwise, mi n(trimi
2 f

(P (τ)) would be greater than all the positions in S (> 2 f

positions), which contradicts the definition of trimi
2 f

() (at most the 2 f smallest
positions are removed).

According to lemma 5.9.1, we have

max(trimi
2 f (P (τ)) ≤ max(U D(τ0))

But Di is the center of trimi
2 f

(P (τ)), which means that |Di ,mi n(trimi
2 f

(P (τ)))|

must be equal to |Di ,max(trimi
2 f

(P (τ)))|. Hence,

Di ≤ max(U D(τ0))−b/2

Lemma 5.9.6. If |S| ≥ m − f and at some time τ1 ≥ τ0, max(U DS(τ1)) ≤

max(U D(τ0))−b, then all computed destinations by all correct robots in cycles that

start after τ1 are less or equal to max(U D(τ0))−b/2.

Proof. First, we prove that after τ1, the robots in S remains always at positions
< max(U D(τ0))−b, meaning that all their computed destinations after τ1 are <

max(U D(τ0))−b.
Assume the contrary: Let ri be the first robot in S that starts a cycle after τ1

such that its computed destination in this cycle is > max(U D(τ0))−b. This im-
plies that max(trimi

2 f
(P (τ1))) > max(U D(τ0))−b, which means that at least 2 f +1

positions in the network at τ1 are strictly greater than max(U D(τ0))−b.
If we add to these 2 f +1 positions that are greater than max(U D(τ0))−b, the

m − f ≥ n − 2 f positions in S that are less or equal than max(U D(τ0)) − b, we
get a total number of robots in the network that is strictly greater than n, which
leads to contradiction. This proves that all positions and destinations of robots in
S after τ1 are less than or equal to max(U D(τ0))− b. Thus by lemma 5.9.5, the
destinations computed by all correct robots in the network are less than or equal
to max(U D(τ0))−b/2.

86

The next Lemma states that if some computed destination is located in the
neighborhood of one extreme of the network, then a majority of correct robots (at
least m −2 f) are located in the neighborhood of this extreme.

Lemma 5.9.7. Let Di be a destination point computed by a correct robot ri in a

cycle started at time τ. If Di < mi n(U D(τ))+b, then at least m −2 f correct robots

are located at positions that are < mi n(U D(τ))+2b at τ.

Proof. The computation of Di is based on the configuration of the network as last
seen by robot ri , that is the configuration at the beginning of the cycle at τ, P (τ).
So we first prove that at τ, max(trimi

2 f
(P (τ))) < mi n(U D(τ))+2b:

By hypothesis, Di < mi n(U D(τ)) + b. But according to lemma 5.9.1,
mi n(U D(τ)) ≤ mi n(trimi

2 f
(P (τ))). Thus, Di < mi n(trimi

2 f
(P (τ)))+b. This means

that

|Di ,mi n(trimi
2 f (P (τ)))| < b

But Di is the center of trimi
2 f

(P (τ)), which means that |Di ,mi n(trimi
2 f

(P (τ)))|

must be equal to |Di ,max(trimi
2 f

(P (τ)))|. Hence,

max(trimi
2 f (P (τ)))) < Di +b

But since by hypothesis Di < mi n(U D(τ))+b, we have

max(trimi
2 f (P (τ)))) < mi n(U D(τ))+2b

This means that at most 2 f positions (which may be correct) are ≥

mi n(U D(τ))+2b at τ. This completes the proof.

Let U (τ0) and D(τ0) be respectively the multisets of positions and destina-
tions of correct robots at the initial time τ0, and define U D(τ0) to be the union
of U (τ0) and D(τ0). Take b to be any distance < diam(U D(τ0))/4, for example
b = diam(U D(τ0))/10.

The next lemma states that if a correct robot elected at τ > τ0 is located in-
side the range (mi n(U D(τ0))+b,max(U D(τ0))−b), then the destinations points
computed by correct robots after τ are either all ≤ max(U D(τ0)) − b/4 or all

≥ mi n(U D(τ0)) + b/4. This means that the election of a robot located inside
(mi n(U D(τ0))+b,max(U D(τ0))−b) is a sufficient condition to convergence.

Lemma 5.9.8. Let τ1 be the first time at which all correct robots in the network

executed a complete cycle at least once since τ0.

87

If a correct robot is elected at τ > τ1 and is located inside [mi n(U D(τ0)) +
b,max(U D(τ0))−b], then the destination points computed by correct robots in cy-

cles that start after τ are either all located at positions ≤ max(U D(τ0))−b/4 or all

located at positions ≥ mi n(U D(τ0))+b/4.

Proof. Let ri be a correct robot that is elected at time τ > τ1 and whose position
Ui (τ) is inside [mi n(U D(τ0))+ b,max(U D(τ0))− b]. According to lemma 5.9.3,
either Ui (τ) ≥Um− f (τ) or Ui (τ) ≤U f +1(τ). Thus, we separate the analysis into two
cases depending on the rank of the elected robot:

• Case 1: Ui (τ) ≥Um− f (τ).

Define S(τ) to be the set of correct positions {U1(τ), ...,Um− f (τ), ...,Ui (τ)},
and note that |S(τ)| ≥ m − f .

By hypothesis, Ui (τ) ≤ max(U D(τ0))− b which implies that the positions
of all robots in S(τ) are ≤ mi n(U D(τ0)) + b. Thus by lemma 5.9.4, the
destinations of all robots in S(τ) are ≤ max(U D(t0)) − b/2. This means
that r ang eS(τ), the range of positions and destinations of robots in S(τ) is
such that at τ, max(r ang eS(τ)) ≤ max(U D(τ0))−b/2. Hence, according to
lemma 5.9.6, all destinations points computed by correct robots in cycles
that start after τ are ≤ max(U D(τ0))−b/4.

• Case 2: Ui (τ) ≤U f +1(τ).

The case is symmetric and we prove by a similar argument to Case 1 that
all destination points computed by correct robots are ≥ mi n(U D(τ0))+b/4,
which proves our lemma.

Lemma 5.9.9. Algorithm 7 is shrinking for n > 5 f in the NTOM[AS] model.

Proof. Let U (τ0) = {U1(τ0),Um(τ0)} be the configuration of correct robots at initial
time τ0, and let D(τ0) = {D1(τ0), ...,Dm(τ0)} the multiset of their destinations at τ0.
Define U D(τ0) to be the union of U (τ0) and D(τ0), and let diam(τ0), the diameter
at τ0, be equal to max(U D(τ0))−mi n(U D(τ0)). U (τ), D(τ), U D(τ) and diam(τ)
for each τ> τ0 are defined similarly.

Let τ1 be the first time at which every correct robot in the network has executed
a whole cycle at least once since τ0. We consider the evolution of the network after
τ1. The aim of this is to apply lemma 5.9.4, that is, based only on the position of
a correct robot, we can give bounds on its destination point which is especially
interesting in the case of a robot executing a Move phase of its cycle.

88

We take into account all the computed destinations by correct robots after τ1

and we distinguish between two cases: (1) the case when all destinations com-

puted after τ1 are inside [mi n(U D(τ0)) +
diam(τ0))

10
,max(U D(τ0)) −

diam(τ0)

10
].

and (2) the case when a computed destination after τ1 lay outside this range. We
show that in both cases, there is a time at which the diameter of correct positions
decreases by a factor of at least 39/40.

• Case 1: All destinations computed by correct robots in cycles started after
τ1 are inside the range

[mi n(U D(τ0))+diam(τ0)/10,max(U D(τ0))−diam(τ0)/10].

In this case, since each robot ri is guaranteed to move a minimal
distance of δi before it can be stopped by the adversary, there is a
time τ2 ≥ τ1 when all correct robots are located inside [mi n(U D(τ0)) +
diam(τ0)/10,max(U D(τ0))−diam(τ0)/10]. Thus diam(τ2) = diam(τ0)∗4/5,
and by setting α= 4/5, our algorithm is shrinking.

• Case 2: There is a destination Di , computed by a correct robot ri in a cycle
started after τ1, that is outside the range

[mi n(U D(τ0))+diam(τ0)/10,max(U D(τ0))−diam(τ0)/10].

This means that either Di < mi n(U D(τ0)) + diam(τ0)/10 or Di >

max(U D(τ0))− diam(τ0)/10. Since the two cases are symmetric, there is
no loss of generality to assume that Di < mi n(U D(τ0))+diam(τ0)/10.

The calculation of Di is based on the configuration of the network as seen
by robot ri at the beginning of the cycle, say at τ2 (with τ2 ≥ τ1). Thus,
according to lemma 5.9.7, at τ2, at least m − 2 f correct robots are lo-
cated at positions < mi n(U D(τ0)) + diam(τ0)/5. Denote by S(τ2) the set
of these robots. By lemma 5.9.4, the destinations of robots in S(τ2) are
< mi n(U D(τ0))+diam(τ0)∗ (3/5). Thus, the positions and destinations of
robots in S(τ2) are < max(U D(τ0))−diam(τ0)∗2/5.

We now observe the positions of elected robots whose rank is ≤ f + 1 and
which are activated after τ2. We separate the analysis into two subcases:

– Subcase 2A: There is a time τ > τ2 at which is elected a cor-
rect robot ri whose rank is ≤ f + 1 and whose position Ui (τ) is >

89

mi n(U D(τ0))+diam(τ0)/10. Notice that since |S(τ2)| > m −2 f , Ui (τ)
is also < max(U D(τ0)) − diam(τ0) ∗ 2/5 which is the upper bound
on the positions of robots in S(τ2). Thus, Ui (τ) ∈ [mi n(U D(τ0)) +
diam(τ0)/10,max(U D(τ0)) − diam(τ0)/10] and according to lemma
5.9.8, the diameter eventually decreases by a multiplicative factor of
1−1/40. Hence, by setting α= 39/40 the lemma follows.

– Subcase 2B: All elected correct robots that are activated after τ2 and
whose rank is ≤ f + 1 are located at positions < mi n(U D(τ0)) +
diam(τ0)/10. This implies, according to lemma 5.9.4, that the positions
of these elected robots remain always at positions < max(U D(τ0))−
diam(τ0)∗ 9/20. Thus, all robots in S(τ2) remain always at positions
< max(U D(τ0))−diam(τ0)∗9/20 (∀t > τ2).

According to lemma 5.9.5, all destinations computed at cycle that start
after τ2 are < max(U D(τ0))− diam(τ0)∗ 9/40. And since robots are
guaranteed to move toward destinations by a minimum distance be-
fore they can be stopped by the adversary, they all end up located at po-
sitions < max(U D(τ0))−diam(τ0)∗9/40. Hence there is a time τ> τ2

such that diam(τ) = diam(τ0)∗ (1− 9/40). It suffices to set α = 31/40
and the lemma follows.

Consequently, we set α= 39/40 and the lemma is proved.

90

C
H

A
P

T
E

R

6
RoboCast

6.1 Introduction

In this chapter we implement the RoboCast communication abstraction in the
non-oblivious NTOM model. We assume that each robot has its own local coor-
dinate system which remains consistent during the whole execution unless it is
changed by the robot. The RoboCast primitive permits robots not agreeing on a
common coordinate system, to exchange their local coordinate systems. For sim-
plicity, we first present an algorithm for a network consisting in only two robots
(Section 6.2). Then, we generalize the solution for any number of robots (Section
6.3). Our algorithms rely on a local collision avoidance scheme that is presented
in Section 6.4. Finally, using the RoboCast primitive, we propose in Section 6.5 al-
gorithms for deterministic non-oblivious asynchronous gathering for two robots
networks and binary information exchange (stigmergy). to implement two funda-
mental building blocks in robot networks: non-oblivious gathering for two robots
networks and stigmergy.

6.2 RoboCasting the Local Coordinate System: Two Robots

Networks

In this section we present algorithms for robocasting the local coordinate system
in a two robots networks. The local coordinate system is defined by two axes (ab-

91

scissa and ordinate), their positive directions and the unity of measure. In order to
robocast this information we use a modular approach. That is, robots invoke first
the RoboCast primitive (Li neRbcast1 hereafter) to broadcast a line representing
their abscissa. Then, using a parametrized module (Li neRbcast2), they robocast
three successive lines encoding respectively their ordinate, unit of measure and
the positive direction of axes. When a node broadcasts a line, without any addi-
tional knowledge, two different points have to be sent in order to uniquely identify
the line at the destination. However, in the case of a coordinate system, only for
the first transmitted axis nodes need to identify the two points. The transmission
of the subsequent axes needs the knowledge of a unique additional point.

6.2.1 Line RoboCast

In robot networks the broadcast of axes is a long-studied issue. Suzuki and Ya-
mashita [34, 35] presented an algorithm for broadcasting the axes via motion that
performs in the ATOM model. However, their algorithm heavily relies on the atom-
icity of cycles and the observation focus on the different positions of the other
robots during their Move phase.

The idea is as follows: assume two robots r and r ′ that want to broadcast their
x-axes to each others. To do so, each of them move through the positive direction
of its local x-axis each time it is activated. Hence, both move on the positive direc-
tion of their x-axes. When a robot r observes r ′ in at least four different positions,
it can infer that r ′ executed at least two complete cycles [35], which means that r ′

observed r in at least two different positions of its x-axis. Such a claim is true only
in the ATOMmodel, which guarantees that robots execute their cycles in a lock-step
manner. The same idea has been exploited in [22] for building stigmergic systems
in the ATOM model.

This type of observation and correctness argument is invalid in the asyn-
chronous NTOM model. In this model, when a robot r moves towards its desti-
nation, another robot r ′ can be activated k > 1 times with k arbitrarily large, and
thus observe r in k different positions without having any clue on the number of
complete cycles executed by r . In other words, the number of different positions
observed for a given robot is not an indicator on the number of complete executed
cycles since in NTOM, cycles are completely uncorrelated.

Our solution thus uses a novel strategy. That is, the focus moves from ob-
serving robots in different positions to observing their change of direction: each
robot changes its direction of movement when a particular stage of the algorithm
is completed; this change allows the other robots to infer information about the
observed robot.

92

Line RoboCast Detailed Description Let r0 and r1 be the two robots in the sys-
tem. In the sequel, when we refer to one of these robots without specifying which
one, we denote it by ri and its peer by r1−i . In this case, the operations on the in-
dices of robots are performed modulo 2. For ease of presentation we assume that
initially each robot ri translates and rotates its local coordinate system such that
its x-axis and origin coincide with the line to be broadcast and its current location
respectively. We assume also that each robot is initially located in the origin of its
local coordinate system.

At the end of the execution, each robot must have broadcast its own line and
have received the line of its peer. A robot "receives" the line broadcast by its peer
when it knows at least two distinct positions of this line. Thus, to send its line, each
robot must move along it (following a scheme that will be specified later) until it is
sure that it has been observed by the other robot.

The algorithm idea is simple: each robot broadcasts its line by moving along
it in a certain direction (considered to be positive). Simultaneously, it observes
the different positions occupied by its peer r1−i . Once ri has observed r1−i in two
distinct positions, it informs it that it has received its line by changing its direction
of movement, that is, by moving along its line in the reverse direction (the negative
direction if the first movement have been performed in the positive direction of
the line). This change of direction is an acknowledgement for the reception of the
peer line. A robot finishes the algorithm once it changed its direction and observed
that the other robot also changed its direction. This means that both robots have
sent their line and received the other’s line.

The algorithm is described in detail as Algorithm 8. Each robot performs four
stages referred in Algorithm 8 as states:

• state S1: This is the initial state of the algorithm. At this state, the robot ri

stores the position of its peer in the variable pos1 and heads towards the
position (1.0) of its local coordinate system. That is, it moves along its line
in the positive direction. Note that ri stays only one cycle in this state and
then goes to state S2.

• state S2: A this point, ri knows only one point of its peer line (recorded in
pos1). To be able to compute the whole peer line, ri must observe r1−i in
another (distinct) position of this line. Hence, each time it is activated, ri

checks if r1−i is still located in pos1 or if it has already changed its position.
In the first case (line 2.a of the code), it makes no movement by selecting
its current position as its destination. Otherwise (line 2.b), it saves the new
position of r1−i in pos2 and delivers the line formed by pos1 and pos2. Then,

93

it initiates a change of direction by moving towards the point (−1.0) of its
local coordinate system, and moves to state S3.

• state S3: at this point ri knows the line of its peer locally derived from pos1

and pos2. Before finishing the algorithm, ri must be sure that also r1−i

knows its line. Therefore, it observes r1−i until it detects a change of di-
rection (the condition of line 3.a). If this is not the case and if ri is still in
the positive part of its x-axis, then it goes to the position (−1,0) of its local
coordinate system (line 3.b). Otherwise (if ri is already in the negative part
of its x-axis), it performs a null movement (line 3.c). When ri is in state S3

one is sure, as we shall show later, that r1−i knows at least one position of
li , say p. Recall that li corresponds to the x-axis of ri . It turns out that p is
located in the positive part of this axis. In moving towards the negative part
of its x-axis, ri is sure that it will eventually be observed by r1−i in a position
distinct from p, which allows r1−i to compute li .

• state S4: At this stage, both ri and r1−i received the line sent by each others.
That is, ri has already changed its own direction of movement, and observed
that r1−i also changed its direction. But nothing guarantees that at this step
r1−i knows that ri changed its direction of movement. If ri stops now, r1−i

may remain stuck forever (in state S3). To announce the end of the algo-
rithm to its peer, ri heads towards a position located outside li , That is, it
will move on a line nextli (distinct from li) that is given as parameter to
the algorithm. During the move from li to nextli , ri should avoid points
outside these lines. To this end, ri must first pass through my Inter sect ,
which is the intersection of li and nextli - before moving to a point located
in nextli but not on li (refer to lines 3.a.2, 3.a.3 and 4.a of the code).

Note that the RoboCast of a line is usually followed by the RoboCast of other
information (e.g. other lines that encode the local coordinate system). To
helps this process the end of the RoboCast of li should mark the beginning
of the next line, nextli , RoboCast. Therefore, once ri reaches my Inter sect ,
ri rotates its local coordinate system such that its x-axis matches now with
nextli , and then it moves toward the point of (1,0) of its (new) local coordi-
nate system. When r1−i observes ri in a position that is not on li , it learns
that ri knows that r1−i learned l1−i , and so it can go to state S4 (lines 3.a.∗)
and finish the algorithm.

In the following we prove that Algorithm 8 satisfies the specification of a
RoboCast, namely validity and termination. First we introduce some notations
that will be further used in the proofs of the algorithm. For each variable v , and

94

Algorithm 8 Line RoboCast LineRbcast1 for two robots: Algorithm for robot ri .
Variables:
st ate: initially S1

pos1, pos2: initially ⊥

desti nati on,my Inter sect : initially ⊥

Actions:
1. State [S1]: %Robot ri starts the algorithm%

a. pos1 ← obser ve(1− i)
b. desti nati on ← (1,0)i

c. st ate ← S2

d. Move to destination

2. State [S2]: %ri knows one position of l1−i %

a. if (pos1 = obser ve(1− i)) then desti nati on ← obser ve(i)
b. else

1. pos2 ← obser ve(1− i)
2. l1−i ← l i ne(pos1, pos2)
3. Deliver (l1−i)
4. desti nati on ← (−1,0)i

5. st ate ← S3 endif

c. Move to destination

3. State [S3]: %ri knows the line robocast by robot r1−i %

a. if (pos2 is not inside the line segment [pos1,obser ve(1− i)]) then

1. st ate ← S4

2. my Inter sect ← i nter sect i on(li ,nextli)
3. desti nati on ← my Inter sect

b. else if (obser ve(i) ≥ (0,0)i) then desti nati on ← (0,−1)i

c. else desti nati on ← obser ve(i) endif endif

d. Move to destination

4. State [S4]: %ri knows that robot r1−i knows its line li %

a. if (obser ve(i) 6= my Inter sect) then desti nati on ← my Inter sect

b. else

1. ri rotates its coordinate system such that its x-axis and the origin match
with

nextli and my Inter sect respectively.
2. desti nati on ← (1,0)i ; return endif

c. Move to destination

95

each robot ri , we denote ri .v(τ) the value of the variable v in the local memory of
ri at time τ. When the time information can be derived from the context, we use
simply ri .v .

Proof of the Validity property. We start by the validity property. For this, we first
prove a series of technical lemmas. The following two lemmas state the existence
of a time instant at which both robots have reached S2 and a following time instant
at which at least one of them have reached S3.

Lemma 6.2.1. Eventually, both robots reach state S2.

Proof. Thanks to the fairness assumption of the scheduler, every robot is activated
infinitely often. The first time each robot is activated, it executes the lines (1.a, 1.b,
1.c) of Algorithm 8 and it reaches the state S2.

Lemma 6.2.2. Eventually, at least one robot reaches state S3.

Proof. Let r1 and r2 be two robots executing Algorithm 8, and assume towards
contradiction that neither of them reaches state S3. But according to Lemma 6.2.1,
they both eventually reach S2. Consider for each robot ri the cycle in which it
reaches state S2, and define τi to be the time of the end of the Look phase of this
cycle. Without loss of generality, assume τ1 ≤ τ2 (the other case is symmetric).
Hence, the variable r1.pos1 describes the position of robot r2 at τ1 expressed in
the local coordinate system of robot r1. Let τ3 > τ2 be the time at which robot r2

finishes its cycle that leads it to state S2. Between τ2 and τ3, robot r2 performed
a non null movement because it moved towards the point (1.0) of its local coordi-
nate system (line 1.b of the code). Hence, the position of r2 at τ3 is different from
its position at τ1 ≤ τ2, which was recorded in the variable r1.pos1. By assumption,
r2 never reaches state S3, so each time it is activated after τ3 it keeps executing the
lines 2.a and 2.c of the code and never moves from its current position (reached
at τ3). By fairness, there is a time τ ≥ τ3 at which robot r1 is activated again. At
this time, it observes r2 in a position different from r1.pos1. This means that for
r1 the condition of line 2.a is false. Hence, r1 executes the else block of the con-
dition (2.b.∗) and reaches state S3, which contradicts the assumption and proves
the lemma.

The next lemma expresses the fact that our algorithm exhibits some kind of
synchrony in the sense that robots advance in the execution of the algorithm
through the different states in unison. That is, neither of them surpasses the other
by more than one stage (state).

96

Lemma 6.2.3. If at some time robot ri is in state S j and robot r1−i is in state Sk then

| j −k| ≤ 1.

Proof. The proof of the lemma is divided into two parts:

• If robot ri is in state S3 and robot r1−i is in state S j then j ≥ 2.

proof: Since robot ri is in state S3, it has necessarily executed the lines
(1.a . . .1.d) and (2.b.∗) of the code. Hence, the value of variable ri .pos1 is dif-
ferent from that of ri .pos2. This means that ri has seen r1−i in at least two
different positions that implies that r1−i has been activated at least once.
Hence, r1−i has necessarily executed the lines (1.a . . .1.c) and has reached
S2.

• If robot ri is in state S4 and robot r1−i is in state S j then j ≥ 3.

proof: For a robot r1−i to reach state S4, it must execute the line 3.a of
the code and detect that the other robot r1−i has changed its direction of
movement (it moved toward the negative part of its x-axis). Thus, robot r1−i

has necessarily executed lines (2.b.2 . . .2.c) of the code, which means that
r1−i is in state S3. Before this, robot r1−i moved only in one direction, that
is, in the positive direction of its x-axis.

This proves the lemma.

The following lemma states that each robot ri is guaranteed to be observed by
its peer at least once in a position located in the positive part of its local x-axis.
The observed position is stored in r1−i .pos1. Expressed otherwise, this means that
each robot "sends" a position located in its positive x-axis to its peer. This prop-
erty is important for proving validity that corresponds to both robots eventually
reaching S3 (Lemmas 6.2.5 and 6.2.6). Indeed, since each robot ri is guaranteed
that a point located in its local x-axis was received by its peer r1−i , it suffices for ri

to send its line to head toward the negative part of its x-axis and to stay there until
it is observed by r1−i . That is, until a position located in its negative x-axis (and
thus distinct from r1−i .pos1) is received by r1−i .

Lemma 6.2.4. For each robot ri , the variable ri .pos1 describes a position located in

the positive axis of the other robot r1−i .

Proof. The value of the variable ri .pos1 is assigned for the first time in line 1.a
when ri is still in state S1. At this time, according to Lemma 6.2.3, r1−i is necessar-
ily in state S1 or S2 (Otherwise, this would contradict Lemma 6.2.3 since we would
have a time at which a robot (r1−i) is in a state S j with j ≥ 3 concurrently with an-
other robot (ri) that is in state S1). This means that the variable ri .pos1 describes

97

a position held by robot r1−i while it was in state S1 or S2. But according to the
algorithm, when a robot is in state S1 or S2, it is still located in a position of its pos-
itive x-axis (or the origin). Hence, the variable ri .pos1 describes a position located
in the positive x-axis of robot r1−i , which proves the lemma.

Lemma 6.2.5. Eventually, both robots reach state S3.

Proof. According to Lemmas 6.2.2 and 6.2.3, there is a time at which some robot,
say ri , reaches S3 and the other one (r1−i) is at a state S j with j ≥ 2. If j ≥ 3 then
the lemma holds and we are done. So we assume in what follows that r1−i is at S2

and we prove that it eventually reaches S3. Assume for the sake of contradiction
that this is not the case, that is, r1−i remains always stuck in S2. This implies,
according to Lemma 6.2.3, that ri remains also stuck in state S3. When ri is in state
S3, it keeps executing the line 3.b of the code until it reaches a position located in
the negative part of its x-axis. Denote by τ1 the first time at which ri reaches its
negative x-axis. Each time ri is activated after τ1, it executes the line 3.c of the code
corresponding to a null movement and it never moves from its current position
(located in the negative x-axis). This is because we assumed that ri remains stuck
in S3 forever. By fairness, there is a time τ2 ≥ τ1 at which r1−i is activated. This
time, the condition of line 2.a does not hold for robot r1−i because the position
returned by obser ve(i) is located in the negative x-axis of ri and is different from
r1−i .pos1 that is located in the positive part of the x-axis of r1 (as stated in Lemma
6.2.4). Hence, r1−i executes the part 2.b.∗ of the code and changes its status to
S3.

Proof of the Validity property.

Lemma 6.2.6. Algorithm 8 satisfies the validity property of the Line RoboCast

Problem for two robots.

Proof. Eventually both robots reach state S3 according to Lemma 6.2.5. Each robot
ri in state S3 has necessarily executed the blocks 1.∗ and 2.b.∗ of the algorithm
and thus delivered the line defined by the positions ri .pos1 and ri .pos2. Now we
prove that this line is well defined and that it does correspond to l1−i , the line
sent by r1−i . ri .pos1 and ri .pos2 are well defined since they are assigned a value
in lines 1.a and 1.b.1 respectively before ri delivers the line. The assigned values
correspond to two positions of r1−i . Moreover, by the condition of line 2.b. we
have that these two positions are distinct. It remains to prove that they belong to
l1−i .

The values of variables ri .pos1 and ri .pos2 are assigned when ri is in state S1

and S2 respectively. Hence, according to Lemma 6.2.3, when ri .pos1 and ri .pos2

98

are defined, r1−i did not yet reach S4 and moved only through its x-axis. This
means that ri .pos1 and ri .pos2 correspond to two distinct positions of the x-axis
of r1−i . Hence, ri delivered l1−i . Since both robots eventually reach S3, both lines
li and l1−i are eventually delivered.

Proof of the Termination property. Now we prove that the algorithm actually
terminates. Before terminating, each robot ri must be sure that its peer r1−i has
received its sent line, that is, r1−i has reached the state S3. As already explained, ri

can infer the transition of r1−i to S3 by detecting a change of its direction of move-
ment. Upon this, ri can go on to state S4 and terminates safely. In the following
two lemmas, we prove that at least one robot reaches S4. To do this, we first prove
in Lemma 6.2.7 that at least one robot, say r1−i , is observed by its peer in two dis-
tinct positions located in the positive part of its x-axis. Later, when r1−i moves to
its negative x-axis and ri observes it there, ri learns that r1−i changed its direction
of movement that allows the transition of ri to state S4. This is proved in Lemma
6.2.8.

Lemma 6.2.7. For at least one robot, say ri , the two variables ri .pos1 and ri .pos2

describe two positions located in the positive x-axis of r1−i and such that ri .pos2 >

ri .pos1 with respect to the local coordinate system of r1−i .

Proof. Let ri be the first robot to enter state S3. The other robot (r1−i) is in state
S2 in accordance with Lemma 6.2.3. Hence, r1−i moved only through the positive
direction of its x-axis, so the variables ri .pos1 and ri .pos2 correspond to two differ-
ent positions in the positive x-axis of robot r1−i or in its origin. But since ri .pos2

was observed after ri .pos1 and r1−i moves in the positive direction of its x-axis,
then ri .pos2 > ri .pos1 with respect to the local coordinate system of r1−i .

Lemma 6.2.8. Eventually, at least one robot reaches state S4.

Proof. We assume towards contradiction that no robot ever reach S4. But accord-
ing to Lemma 6.2.5, both robots eventually reach S3. Hence we consider a config-
uration in which both robots are in S3 and we derive a contradiction by proving
that at least one of them does reach S4. Let ri be the robot induced by Lemma
6.2.7. The variables ri .pos1 and ri .pos2 of ri correspond to two different positions
occupied by r1−i while it was on the positive part of its x-axis. By assumption, r1−i

eventually reaches state S3. At the end of this cycle, r1−i is either located in a posi-
tion of its negative x-axis or it keeps executing lines 3.b.∗ each time it is activated
until it reaches such a position, let’s call it p. The next cycles it is activated, r1−i

executes the line 3.c of the code because we assumed that r1−i never reaches S4. It
results that r1−i never quits p. Hence, r1−i is guaranteed to be eventually observed

99

by ri in a position that is smaller than ri .pos2 with respect to the local coordinate
system of r1−i . At this point, the condition of line 3.4 becomes true for robot ri ,
which executes the block of the code labeled by 3.4.∗ and sets is state to S4.

Lemma 6.2.9. Eventually, both robots reach state S4.

Proof. According to Lemma 6.2.8 at least one robot, say ri , eventually reaches S4.
When ri reaches S4, r1−i is in a state S j with j ≥ 3 according to Lemma 6.2.3. If
j = 4 the lemma holds trivially, so we consider in the following a configuration
in which r1−i is in state S3 and we prove that it eventually joins ri in state S4.
The variables r1−i .pos1 and r1−i .pos2 of r1−i describe two distinct positions lo-
cated in the x-axis of robot ri . Let pi describes the position of ri at the end of
the cycle in which it reaches S4. Once in state S4, ri moves towards the point
my Inter sect each time it is activated until it reaches it (lines 3.a.2 and 4.a of
the code). my Inter sect is the point located at the intersection of li and nextli

and its distance from pi is finite. Since ri is guaranteed to move a minimal dis-
tance of δi at each cycle in which it is activated, it reaches my Inter sect after
a finite number of cycles. The next cycle, ri chooses a destination located out-
side li (4.b.2) and moves towards it before finishing the algorithm. Let τi be the
time of the end of the Move phase of this cycle and let qi be the position occu-
pied by ri at τi . qi ∉ li means that qi ∉ l i ne(r1−i .pos1,r1−i .pos2). It follows that
r1−i .pos2 ∉ l i ne(r1−i .pos1, qi). By fairness, there is a time τ > τi at which r1−i is
activated again, and at which it observes ri in the position qi . But we showed that
qi is such that r1−i .pos2 ∉ l i ne(r1−i .pos1, qi). Hence the condition of line 3.a is
true for robot r1−i in τ and it reaches state S4 in this cycle.

Lemma 6.2.10. Algorithm 8 satisfies the termination property of the Line

RoboCast Problem for two robots.

Proof. Eventually, both robots reach S4 as proved by Lemma 6.2.9. Let ri be a robot
in state S4 and let pi be its position at the end of the cycle in which it reaches S4,
Let di be the distance between pi and my Inter secti . Since the scheduler is fair
and a robot is allowed to move in each cycle a minimal distance of σi before it can
be stopped by the scheduler, it follows that ri is guaranteed to cover the distance
di and to reach my Inter sect after at most di /σi cycles. The next cycle, ri moves
outside li and terminates.

Theorem 6.2.1. Algorithm 8 solves the Line RoboCast Problem for two robots in

non-oblivious NTOM systems.

Proof. Follows directly from Lemmas 6.2.6 and 6.2.10.

100

6.2.2 Composing RoboCast

Line RoboCast primitive is usually used as a building block for achieving more
complex tasks. For example, the RoboCast of the local coordinate system requires
the transmission of four successive lines representing respectively the abscissa,
the ordinate, the value of the unit measure and a forth line to determine the pos-
itive direction of axes. In stigmergic communication a robot has to transmit at
least a line for each binary information it wants to send. In all these examples, the
transmitted lines are dependent one of each other and therefore their successive
transmission can be accelerated by directly exploiting this dependence. Indeed,
the knowledge of a unique point (instead of two) is sufficient for the receiver to in-
fer the sent line. In the following we propose modifications of the Line RoboCast

primitive in order to exploit contextual information that are encoded in a set of
predicates that will be detailed in the sequel.

In the case of the local coordinate system, the additional information the
transmission can exploit is the fact that the abscissa is perpendicular to the or-
dinate. Once the abscissa is transmitted, it suffices for a robot to simply send a
single position of its ordinate, say pos1. The other robots can then calculate the
ordinate by finding the line that passes through pos1, which is perpendicular to
the previously received abscissa. In the modified version of the Line RoboCast

algorithm the predicate i sPer pendi cul ar encodes this condition.

For the case of stigmergy, a robot transmits a binary information by robocast-
ing a line whose angle to the abscissa encodes this information. The lines trans-
mitted successively by a single robot are not perpendicular to each others. How-
ever, all these lines pass through the origin of the coordinate system of the sending
robot. In this case, it suffices to transmit only one position located on this line as
long as it is distinct from the origin. We say in this case that the line satisfies the
predicate passT hr Or i g i n.

A second change we propose relates to the asynchrony of the algorithm. In
fact, even if robots execute in unison, they are not guaranteed to finish the exe-
cution of Li neRbcast1 at the same time (by reaching S4). A robot ri can begin
transmitting its k-th line li when its peer r1−i is still located in its (k − 1)-th line
anci entl1−i that ri has already received. ri should ignore the positions transmit-
ted by r1−i until it leaves anci entl1−i for a new line. It follows that to make the
module composable, the old line that the peer has already received from its peer
should be supplied as an argument (anci entl1−i) to the function. Thus, it will not
consider the positions occupied by r1−i until the latter leaves anci entl1−i .

In the following, we present the code of the new Line RoboCast function that
we denote by Li neRbcast2.

101

6.2.3 RoboCast of the Local Coordinate System

To robocast their two axes (abscissa and ordinate), robots call LineRbcast1 to
robocast the abscissa, then LineRbcast2 to robocast the ordinate. The parame-

Algorithm 9 Line RoboCast LineRbcast2 for two robots: Algorithm for robot ri .
Inputs:

li : the line to robocast
nextli : the next line to robocast after li

pr ecedentl1−i : the line robocast precedently by r1−i

pr edi cate: a predicate on the output l1−i , for example i sPer pendi cul ar and
passT hr Or i g i n.

Outputs:

l1−i : the line robocast by r1−i

Variables:
st ate: initially S1

pos1: initially ⊥

desti nati on,my Inter sect , peer Inter sect : initially ⊥

Actions:
1. State [S2]: %ri starts robocasting its line li %

a. if (obser ve(1− i) ∈ pr ecedentl1−i) then desti nati on ← obser ve(i)
b. else

1. pos3 ← obser ve(1− i)
2. l1−i ← the line that passes through pos3 and satisfies pr edi cate.
3. Deliver (l1−i)
4. peer Inter sect ← intersection between l1−i and pr ecedentl1−i

5. desti nati on ← (0,−1)i

6. st ate ← S3 endif

c. Move to destination

2. State [S3]: %ri knows the line robocast by robot r1−i %

a. if (pos3 is not inside the line segment [peer Inter sect ,obser ve(1− i)]) then

1. st ate ← S4

2. my Inter sect ← i nter sect i on(li ,nextli)
3. desti nati on ← my Inter sect

b. else if (obser ve(i) ≥ (0,0)i) then desti nati on ← (0,−1)i

c. else desti nati on ← obser ve(i) endif endif

d. Move to destination

3. State [S4]: similar to state S4 of the l i neRbcast1 function.

102

ter 6= myOr di nate of Li neRbcast2 stands for the next line to be robocast and
it can be set to any line different from myOr di nate. The next line to robocast
(uni tLi ne) is a line whose angle with the x-axis encodes the unit of measure. This
angle will be determined during the execution Li neRbcast2.

1. peer Absci ssa ← Li neRbcast1(my Absci ssa,myOr di nate)
2. peer Or di nate ←

Li neRbcast2(myOr di nate, 6= myOr di nate, peer Absci ssa, i sPer pendi cul ar)

After executing the above code, each robot knows the two axes of its peer co-
ordinate system but not their positive directions neither their unit of measure.
To robocast the unit of measure we use a technique similar to that used by [34].
The idea is simple: each robot measures the distance di between its origin and
the peer’s origin in terms of its local coordinate system. To announce the value
of di to its peer, each robot robocast via LineRbcast2 a line, uni tLi ne, which
passes through its origin and whose angle with its abscissa is equal to f (di) where
for x > 0, f (x) = (1/2x) × 90◦ is a monotonically increasing function with range
(0◦,90◦). The receiving robot r1−i can then infer di from f (di) and compute the
unit measure of ri that is equal to d1−i /di . The choice of (0◦,90◦) as a range for
f (x) (instead of (0◦,360◦)) is motivated by the fact that the positive directions of
the two axes are not yet known to the robots. It is thus impossible to distinguish
between an angle α with α ∈ (0◦,90◦) and the angles Π−α, −α, and Π+α. To over-
come the ambiguity and to make f (x) injective, we restrict the range to (0◦,90◦).
In contrast, Suzuki and Yamashita [34] use a function f ′(x) slightly different from
ours: (1/2x)×360◦. That is, its range is equal to (0◦,360◦). This is because in ATOM,
robots can robocast at the same time the two axis and their positive directions, for
example by restricting the movement of robots to only the positive part of their
axes. Since the positive directions of the two axes are known, uni tLi ne can be an
oriented line whose angle f ′(x) can take any value in (0◦,360◦) without any possi-
ble ambiguity.

Positive directions of axes Once the two axes are known, determining their pos-
itive directions amounts to selecting the upper right quarter of the coordinate sys-
tem that is positive for both x and y . Since the line used to robocast the unit of
distance passes through two quarters (the upper right and the lower left), it re-
mains to choose among these two travelled quarters which corresponds to the
upper right one. To do this, each robot robocast just after the line encoding the
unit distance another line that is perpendicular to it such that their intersection
lays inside the upper right quarter.

103

6.3 RoboCasting the Local Coordinate System: n-Robots

Networks

In this section, we describe the RoboCast Algorithm for the general case of n

robots. Then we give its formal proof of correctness.

The generalization of the solution to the case of n > 2 robots has to use an ad-
ditional mechanism to allow robots to "recognize" other robots and distinguish
them from each others despite anonymity. Let us consider the case of three robots
r1,r2,r3. When r1 looks the second time, r2 and r3 could have moved (or be mov-
ing), each according to its local coordinate system and unit measure. At this point,
even with memory of past observations, r1 may be not able to distinguish between
r2 and r3 in their new positions given the fact that robots are anonymous. More-
over, r2 and r3 could even switch places and appear not to have moved. Hence, the
implementation of the primitive obser ve(i) is not trivial. For this, we use the col-
lision avoidance techniques presented in the next section to instruct each robot
to move only in the vicinity of its initial position. This way, other robots are able
to recognize it by using its past positions. The technical details of this mechanism
are given at the end of the next section.

We now present the details of the generalization.

Description of the Algorithm The Line RoboCast algorithm for the general case
of n processes is a simple generalization of the algorithm for two robots. The code
of this algorithm is in Algorithm 10. It consists in the following steps: The first time
a robot ri is activated in state S1, it simply records the positions of all other robots
in the array pos1[]. Then, it moves towards the point (1,0) of its local coordinate
system and goes to state S2. When ri is in state S2, each time it observes some
robot r j in a position different from the one recorded in pos1[j], it stores it in
pos2[j]. At this point, ri can infer the line sent by r j that passes through both
pos1[j] and pos2[j]. Hence, ri delivers l i ne(ri ,r j), which corresponds to l j . ri

does not move from its current position until it assigns a value to all the cells of
pos2[] (apart from the one associated with itself, which is meaningless). That is,
until it delivers all the lines sent by its peers. Upon this, it transitions to S3 and
heads to the point (−1,0). At state S3, ri waits until it observes that all other robots
changed the direction of their movement or moved outside their sent line. Then,
it moves towards a position located outside its current line li . In particular, it goes
to a position located in nextli , the next line it will robocast. Hence ri first passes
by the intersection of li and nextli . Then, it moves outside li and terminates the
algorithm.

We now prove the correctness of our algorithm by proving that it satisfies the

104

Algorithm 10 Line RoboCast LineRbcast1 for n robots: Algorithm for robot ri .
Variables:
st ate: initially S1.
pos1[1 . . .n]: initially ⊥

pos2[1 . . .n]: initially ⊥

desti nati on, i nter sect i on: initially ⊥

Actions:
1. State [S1]: %Robot ri starts the algorithm%

a. foreach 1 ≤ j ≤ n do pos1[j] ← obser ve(j) enddo

b. desti nati on ← (1,0)i

c. st ate ← S2

d. Move to destination

2. State [S2]: %ri knows at least one position of the lines of all other robots%

a. if ∃ j 6= i s.t. (pos2[j] =⊥) and (pos1[j] 6= obser ve(j)) then

1. pos2[j] ← obser ve(j)
2. Deliver (l i ne(pos1[j], pos2[j]) endif

b. if ∃ j 6= i s.t. (pos2[j] =⊥) then desti nati on ← obser ve(i)
c. else

1. desti nati on ← (−1,0)i

2. st ate ← S3 endif

d. Move to destination

3. State [S3]: %ri knows the lines of all other robots%

a. if ∀ j 6= i pos2[j] is outside the line segment [pos1[j],obser ve(j)] then

1. i nter sect i on ← li ∩nextli

2. desti nati on ← i nter sect i on

3. st ate ← S4

b. else if (obser ve(i) ≥ (0,0)i) then desti nati on ← (−1,0)
c. else desti nati on ← obser ve(i) endif endif

d. Move to destination

4. State [S4]: %ri knows that all robots have learned its line li %

a. if (obser ve(i) 6= i nter sect i on) then desti nati on ← i nter sect i on

b. else

1. ri rotates its coordinate system such that its x-axis and the origin match
with

nextli and i nter sect i on respectively.
2. desti nati on ← (1,0)i

3. return endif

c. Move to destination

105

validity and termination property of the RoboCast Problem specification. The
general idea of the proof is similar to that of the two robots algorithms even if it
is a little more involved.

Proof of the Validity property

Lemma 6.3.1. Eventually, all robots reach state S2.

Proof. Similar to the proof of Lemma 6.2.1.

Lemma 6.3.2. Eventually, at least one robot reaches state S3.

Proof. Let R = {r1,r2, . . . ,rn} be a set of n robots executing Algorithm 10. We as-
sume towards contradiction that neither of them ever reach S3. But according to
Lemma 6.3.1, all robots eventually reach state S2. Thus we proceed in the follow-
ing way: we consider a configuration in which all robots are in S2 and we prove
that at least one of them eventually reaches S3 that leads us to a contradiction.
Consider for each robot ri ∈R the cycle in which it reaches the state S2, and define
τi and τ′

i
to be respectively the time of the end of the Look and the Move phases

of this cycle. Let τk be equal to mi n{τ1,τ2, . . . ,τn} and let rk be the correspond-
ing robot. That is, at τk , robot rk finishes to execute a Look phase and at the end
of this cycle it reaches state S2. This means that for robot rk , the array rk .pos1[]
corresponds to the configuration of the network at time τk .

Between τi ≥ τk and τ′
i

each robot executes complete Compute and Move
phases. The movement performed in this phase cannot be null because robots
move from the point (0,0) towards the point (1,0) of their local coordinate sys-
tem (line 1.b of the code). Moreover, the scheduler cannot stop a robot before it
reaches the point (δi , 0). Hence, the position of each robot ri at τ′

i
is different from

its position at τi . But the position of ri at τi is equal to its position at τk . Thus,
the position of each robot at τ′

i
is different from its position at τk that is stored in

rk .pos1[i]. We have by assumption that no robot ever reaches S3. So each time a
robot ri is activated after τ′

i
, it keeps executing the lines 2.b and 2.d of the code

and never moves from its current position reached at τ′
i
. Define τend to be equal

to max{τ′1, . . . ,τ′n}. It follows that at ∀τ ≥ τend , the position of each robot ri at τ
is different from rk .pos1[i]. But by fairness, there is a time τa ≥ τend at which rk

is activated again. At this cycle, rk observes that each robot ri is located in a po-
sition different from rk .pos1[i]. Consequently, if there exists a robot ri such that
rk .pos2[i] was equal to ⊥ before this cycle, then rk assigns the current observed
position of ri to rk .pos2[i]. This implies that the condition of line 2.b is now false
for rk . Hence rk executes the else block of the condition and reaches state S3. This
is the required contradiction that proves the lemma.

106

Lemma 6.3.3. For each robot i , for each robot j , if ri .pos1[j] 6=⊥, then pos1[j]
describes a position that is necessarily located in the positive x-axis of robot j .

Proof. The proof follows the same lines as that of Lemma 6.2.4.

Lemma 6.3.4. If at some time robot ri is in state S j and robot r ′
i

is in state Sk then

| j −k| ≤ 1.

Proof. The lemma can be proved by generalising the proof of Lemma 6.2.3 to the
case of n robots. We divide the analysis into two subcases:

• If robot ri is in state S3 and robot r ′
i

is in state S j then j ≥ 2.

proof: If ri is in state S3, this means that it observed all other robots in at
least two distinct positions. This means that all other robots started a Move
phase, which implies that they all finished a complete Compute phase in
which they executed the lines 1.a . . .1.c of the code and reached S2.

• If robot ri is in state S4 and robot r ′
i

is in state S j then j ≥ 3.

proof: For a robot to reach S4, it must detect a change of direction by all

other robots in the network that is captured by the condition of line 3.a. We
prove that this condition cannot be true unless all robots have reached S3

and no robot in the network is still in state S2. Indeed, robots in state S1

move in the positive direction of their x-axis and those in state S2 does not
move. So, a robot cannot change its direction before reaching state S3. This
change of direction is reflected by the choice of point (−1,0) as a destination
in line 2.c.1 of the code before the transition to state S3 in line 2.c.2.

Corollary 6.3.1. If at some time τ, ∃i , j such that robots ri and r j are respectively in

state Sk and Sk+1 at τ with k ∈ {1,2,3}, then all the robots of the network are either

in state Sk or Sk+1 at τ.

Proof. Since ri is in state Sk , no robot in the network can be in a state Sl with
l ≥ k+2 according to Lemma 6.3.4. Similarly, the fact that r j is in state Sk+1 implies
that no robot in the network can be in a state Sl with l ≤ k −1. By the conjunction
of the two facts, we obtain that all robots are either in state Sk or Sk+1.

The following lemma proves the fact that if at time τa , some robots of the net-
work are in state S2 and others are in state S3, then at least one robot that is in state
S2 at τa eventually reaches S3.

107

Lemma 6.3.5. Let G2(τ),G3(τ) be the groups of robots that are respectively in state

S2 and S3 at time τ. If at some time τa ‖G2(τa)‖ > 0 and ‖G3(τa)‖ > 0, then there

exists a time τ≥ τa at which ‖G3(τ)‖ ≥ ‖G3(τa)‖+1.

Proof. Since by assumption ‖G2(τa)‖ > 0 and ‖G3(τa)‖ > 0, it follows from Corol-
lary 6.3.1 that R = G2(τa) ∪G3(τa). We assume toward contradiction that ∀τ ≥

τa G2(τ) = G2(τa) = G2, that is, no robot that is in S2 at τa ever reach S3. But by
assumption we have ‖G2‖ > 0. Hence ∀τ> τa ‖G2(τ)‖ = ‖G2‖ > 0. This implies, in
accordance with Lemma 6.3.4, that no robot of the network can reach S4 after τa .
Consequently, ∀τ′ ≥ t G3(τ′) =G3(τ) =G3 =R\G2.

• As discussed above, we have by assumption that all robots have reached S2

at τa . This means that all robots have executed the line 1.a of the code at τa .
Consequently, at τa , ∀ri ∈ R, ∀r j ∈ R with j 6= i , ri .pos1[j] 6=⊥. Moreover,
according to Lemma 6.3.3 all these positions stored in the arrays pos1[] de-
scribe positions located in the positive x-axis of the corresponding robots.

• By assumption we have that ∀τ > ta ‖G3(τ)‖ = ‖G3‖. This means that no
robot in G3 ever reach S4. Hence robots of G3 never execute the block 3.a.∗
of the code and they keep executing the line 3.b each time they are activated
until they reach a position in their negative x-axes. Then, once a robot of
G3 arrives to the negative part of its x-axis, it keeps executing the line 3.c of
the code each time it is activated. As we showed above, the positions stored
in the different arrays pos1[] are different from ⊥ and correspond to points
located in the positive x-axes of the corresponding robots. Since robots of
G3 eventually get to positions in their negative x-axes and stay there, they
eventually get observed by each robot in the network in a position different
from the one that is stored in its local variable pos1[] that corresponds to
a positive x-axis position. Formally, there is a time τv > t at which ∀ri ∈

G3,∀r j ∈R with r j 6= ri r j .pos2[i] 6=⊥.

• Let r1, . . . ,rm be the robots of G2. Consider for each robot ri ∈ G2 the cycle
in which it reaches the state S2, and define τi and τ′

i
to be respectively the

time of the end of the Look and the Move phase and of this cycle. Let τk

be equal to mi n{τ1,τ2, . . . ,τm} and let rk ∈ G2 be the corresponding robot.
That is, at τk , robot rk finishes to execute a Look phase and at the end of this
cycle it reaches state S2. This means that for robot rk , rk .pos1[] describes
the configuration of the network at time τk . Following the lines of the proof
of Lemma 6.3.2 we obtain that there exist a time τu > t at which ∀r j ∈ G2 \
{rk },rk .pos2[j] 6= ⊥.

108

Now, let τx = max{τv ,τu}. From the discussion above it results that at
time τx , for robot rk ∈ G2 it holds that ∀r j ∈ G3,rk .pos2[j] 6= ⊥ and ∀r j ∈ G2 \
{rk },rk .pos2[j] 6= ⊥. Hence, at τx , ∀ j ∈ R \ {rk },rk .pos2[j] 6= ⊥. This means that
the condition of line 2.a is false for rk at τx , so rk executes the else block of this
condition when activated after τx and reaches state S3, which contradicts the as-
sumption that ∀τ> τa ‖G2(τ)‖ = ‖G2‖.

Lemma 6.3.6. Eventually, all robots of the network reach state S3

Proof. Follows from Lemmas 6.3.1, 6.3.2 and 6.3.5.

Lemma 6.3.7. Algorithm 10 satisfies the validity property.

Proof. The idea of the proof is similar to Lemma 6.2.6. According to Lemma 6.3.6,
all robots eventually reach state S3. Each robot that reach state S3 has neces-
sarily executed the block 1.∗ and the line 2.c of Algorithm 10. Hence, this robot
has its two arrays pos1[] and pos2[] well defined and according to the way the
elements of pos2[] are defined (refer to line 2.a of the code), we conclude that
∀1 ≤ j ≤ n, pos2[j] 6= pos1[j]. Moreover, since robots move only through their
x-axes, ∀ j , pos2[j] and pos1[j] correspond to two positions of the x-axis of robot
j . Hence, each robot in state S3 can infer the x-axes of its peers from pos1[] and
pos2[], which proves the lemma.

Proof of the Termination property

Lemma 6.3.8. Eventually, at least one robot reaches state S4

Proof. We assume for the sake of contradiction that no robot ever reach S4. How-
ever, according to Lemma 6.3.6, all robots eventually reach state S3. Hence we
consider a configuration in which all robots are in state S3 and we prove that at
least one of them eventually reaches S4 that leads us to a contradiction. The idea
of the proof is similar to that of Lemma 6.3.2: we consider the first robot rk that
executes a Look phase of a cycle leading it from S2 to S3. Let τk be the time of
the end of this Look phase. Clearly, ∀ri ∈ R \ {rk }, rk .pos1[i] and rk .pos2[i] de-
scribe two positions of ri located in its positive x-axis. This is because these two
positions were observed by rk before ri reaches S3 and changes its direction of
movement towards its negative x-axis. Moreover, rk .pos2[i] > rk .pos1[i] with re-
spect to the local coordinate system of ri since ri was observed in rk .pos1[i] and
then in rk .pos2[i] while it was moving along the positive direction of its x-axis. The
claim can be proved formally as in Lemma 6.2.7. After τk , all other robots of the
network perform a transition from S2 to S3. Then, they head towards the negative
part of their local x-axes (lines 2.c.1 and 3.b of the code) and stay there (line 3.c)

109

since they cannot reach S4 by assumption. Each robot ri that reaches the negative
part of its x-axis is located in a position pi such that rk .pos2[i] is outside the line
segment [rk .pos2[i], pi]. Hence the condition of line 3.a eventually becomes true
for robot rk , and it reaches S4 after executing the block 3.a.∗ of the code. This is
the required contradiction.

Lemma 6.3.9. Eventually, all robots of the network reach S4.

Proof. The proof is similar to that of Lemma 6.2.9. The intuition behind it is as fol-
lows: we proved in Lemma 6.3.8 that at least one robot, say ri , eventually reaches
S4. After reaching S4, and after a finite number of executed cycles, ri quits li (line
4.b.2). When they observe ri outside li , the other robots transition to state S4.

Lemma 6.3.10. Algorithm 10 satisfies the termination property.

Proof. The proof is similar to that of Lemma 6.2.10

Theorem 6.3.1. Algorithm 8 solves the Line RoboCast Problem for n robots in un-

oblivious NTOM systems.

Proof. Follows directly from Lemmas 6.3.7 and 6.3.10.

Movement Complexity Now we show that the total number of robot moves in
the coordinate system RoboCast is upper bounded. For the sake of presentation,
we assume for now that the scheduler does not interrupt robots execution before
they reach their planned destination. Each robot is initially located at the origin of
its local coordinate system. To robocast each axis, a robot must visit two distinct
positions: one located in the positive part of this axis and the other one located in
its negative part. For example, to robocast its x-axis, a robot has first to move from
its origin to the position (1.0)i , then from (1.0)i to the (−1,0)i . Then, before initi-
ating a RoboCast for the other axis, the robot must first return back to its origin.
Hence, at most 3 movements are needed to robocast each axis. This implies that
to robocast the whole local coordinate system, at most 12 movements have to be
performed by a particular robot.

In the general NTOM model, the scheduler is allowed to stop robots before they
reach their destination, as long as a minimal distance of δi has been traversed. In
this case, the number of necessary movements is equal to at most 8∗(1+1/δi). This
worst case is obtained when a robot is not stopped by the scheduler when moving
from its origin towards another position (thus letting it go the farthest possible),
but stopped whenever possible when returning back from this (far) position to the
origin.

110

This contrasts with [34] and [22] where the number of positions visited by each
robot to robocast a line is unbounded (but finite). This is due to the fact that in
both approaches, robots are required to make a non null movement whenever ac-
tivated until they know that their line has been received. Managing an arbitrary
large number of movements in a restricted space to prevent collisions yields se-
vere requirements in [22]: either robots are allowed to perform infinitely small
movements (and such movements can be seen by other robots with infinite pre-
cision), or the scheduler is restricted in its choices for activating robots (no robot
can be activated more than k times, for a given k, between any two activations of
another robot) and yields to a setting that is not fully asynchronous. Our solution
does not require any such hypothesis.

6.4 Avoinding Collisions

In this section we enhance the algorithms proposed in Section 6.2 with the
collision-free feature. In this section we propose novel techniques for collision
avoidance that cope with the system asynchrony.

Our solution is based on the same principle of locality as the Voronoi Diagram
based schemes. However, acceptable moves for a robot use a different geometric
area. This area is defined for each robot ri as a local zone of movement and is
denoted by Z oMi . We require that each robot ri moves only inside Z oMi . The
intersection of different Z oMi must remain empty at all times to ensure collision
avoidance. We now present three possible definitions for the zone of movement:
Z oM 1

i
, Z oM 2

i
and Z oM 3

i
. All three ensure collision avoidance in NTOM, but only

the third one can be computed in a model where robots do not know the initial
position of their peers.

Let P (τ) = {p1(τ), p2(τ) . . . , pn(τ)} be the configuration of the network at time
τ, such that pi (τ) denotes the position of robot ri at time τ expressed in a global
coordinate system. This global coordinate system is unknown to individual robots
and is only used to ease the presentation and the proofs. Note that P (τ0) describes
the initial configuration of the network.

Definition 17. (Voronoi Diagram) The Voronoi diagram of a set of points P =

{p1, p2, . . . , pn} is a subdivision of the plane into n cells, one for each point in P.

The cells have the property that a point q belongs to the Voronoi cell of point pi iff

for any other point p j ∈ P, |q, pi | < |q, p j |. In particular, the strict inequality means

that points located on the boundary of the Voronoi diagram do not belong to any

Voronoi cell.

111

Definition 18. (Z oM 1
i

) Let DV (τ0) be the Voronoi diagram of the initial configura-

tion P (τ0). For each robot ri , the zone of movement of ri at time τ, Z oM 1
i

(τ), is the

Voronoi cell of point pi (τ0) in DV (τ0).

Definition 19. (Z oM 2
i

) For each robot ri , define the distance di =

min{|pi (τ0), p j (τ0)| with r j 6= ri }. The zone of movement of ri at time τ,

Z oM 2
i

(τ), is the circle centered in pi (0) and whose diameter is equal to di /2. A

point q belongs to Z oM 2
i

(τ) iff |q, pi (τ0)| < di /2.

Definition 20. (Z oM 3
i

) For each robot ri , define the distance di (τ) =

min{|pi (τ0), p j (τ)| with r j 6= ri } at time τ. The zone of ri at time τ, Z oM 3
i

(τ), is the

circle centered in pi (τ0) and whose diameter is equal to di (τ)/3. A point q belongs

to Z oM 3
i

(τ) iff |q, pi (τ0)| < di (τ)/3.

p

current position

initial position

zone of movement

d

d/2

p qq

(a) Z oM2
p

p

q

current position

initial position

zone of movement

d'

d'/3

p q

(b) Z oM3
p

Figure 6.1: Example zones of movement: The network is formed of two robots: p and q . d is the
distance between the initial positions of p and q (dashed circles), d ′ is the distance between the
initial position of p and the current position of q . The diameter of Z oM2

p (blue) is d/2 and that of

Z oM3
p (yellow) is d ′/3.

Note that Z oM 1 and Z oM 2 are defined using information about the initial
configuration P (τ0), and thus cannot be used with the hypotheses of Algorithm 9.
In contrast, robot ri only needs to know its own initial position and the current

positions of other robots to compute Z oM 3
i

. As there is no need for ri to know the
initial positions of other robots, Z oM 3

i
can be used with Algorithm 9. It remains to

prove that Z oM 3
i

guarantees collision avoidance. We first prove that Z oM 1
i

does,
which is almost trivial because its definition does not depend on time. Then, it suf-
fices to prove that Z oM 3

i
⊆ Z oM 2

i
⊆ Z oM 1

i
. Besides helping us in the proof, Z oM 2

i

112

can be interesting in its own as a cheap collision avoidance scheme in the ATOM

model, as computing a cycle of radius half the distance to the nearest neighbor is
much easier that computing a full blown Voronoi diagram.

Lemma 6.4.1. If ∀t , for each robot ri , the destination point computed by ri at τ

remains inside Z oM 1
i

(τ), then collisions are avoided.

Proof. By definition of Voronoi diagram, different Voronoi cells do not overlap.
Moreover, for a given i , Z oM 1

i
is static and does not change over time. Hence,

∀i , j ∈Π, ∀t ,τ′, Z oM 1
i

(τ)∩Z oM 1
j
(τ′) =;.

Clearly, Z oM 2
i
⊆ Z oM 1

i
, which means that Z oM 2

i
ensures also collision avoid-

ance.

Lemma 6.4.2. If ∀t , for each robot ri , the destination point computed by ri at τ

always remains inside Z oM 2
i

(τ), then collisions are avoided.

Lemma 6.4.3. ∀t , Z oM 3
i

(τ) ⊆ Z oM 2
i

(τ).

Proof. Fix some robot ri and let r j be the closest robot from ri at time τ0. Let
d0 denote the initial distance between ri and r j , that is, d0 = |pi (τ0), p j (τ0)|. We
assume that all robots move only inside their Z oM 3

i
computed as explained in

Definition 20. Let τ1 ≥ τ0 be the first time at which a robot in {ri ,r j }, say e.g. ri ,
finishes a Look phase after τ0. The destination computed by ri in this cycle is
located inside Z oM 3

i
(τ1), which is a circle centered at pi (τ0) and whose diameter

is ≤ d0/3. Hence, the destination computed by ri is distant from pi (0) by at most
d0/3. Let τ2 ≥ τ1 be the first time after τ1 at which a robot, say r j , finishes a Look
phase. Between τ1 and τ2, ri may have finished its Move phase or not. In any
case, the observed configuration by r j at τ2 is such that ri is distant from p j (τ0)
by at most d0 +d0/3. This implies that Z oM 3

j
(τ2) has a diameter of at most (d0 +

d0/3)/3, which implies that the destination point computed by r j in this cycle is
distant from p j (τ0) by at most d0 +d0/3+d0/9. Repeating the argument, we get

that ∀t , Z oM 3
i

(τ) has a diameter ≤
∞∑

i=1
d0/3i . Reducing the formula, we obtain that

Z oM 3
i

(τ) is always ≤ d0/2, which implies that Z oM 3
i

(τ) ⊆ Z oM 2
i

(τ).

Ensuring Collision-freedom in Line RoboCast Algorithms To make LineRb-
cast1 and LineRbcast2 collision-free, it is expected that any destination computed
by a robot ri at τ be located within its Z oM 3

i
(τ). The computation of desti-

nations is modified as follows: Let desti (τ) be the destination computed by a
robot ri at time τ. Based on desti (τ), ri computes a new destination dest ′

i
(τ)

that ensures collision avoidance. dest ′
i
(τ) can be set to any point located in

113

[pi (τ0),desti (τ)]∩Z oM 3
i

(τ). For example, we can take dest ′
i
(τ) to be equal to the

point located in the line segment [pi (τ0),desti (τ)] and distant from pi (τ0) by a
distance of di (τ)/2 with di (τ) computed as explained in Definition 20.

This modification of the destination computation method does not impact al-
gorithms correctness since it does not depend on the exact value of computed
destinations, but on the relationship between the successive positions occupied
by each robot. The algorithms remain correct as long as robots keep the capability
to freely change their direction of movement and to move in both the positive and
the negative part of each such direction. This capability is not altered by the col-
lision avoidance scheme since the origin of the coordinate system of each robot -
corresponding to its original position - is strictly included in its zone of movement,
be it defined by Z oM 1, Z oM 2 or Z oM 3.

Generalisation of the Collision-avoidance Protocols to n Robots As explained
at the end of Section 6.2, the generalisation of our algorithms to the case of n

robots has to deal with the issue of distinguishing robots from each others de-
spite their anonymity. The solution we use is to instruct each robot to move in the
close neighbourhood of its original position. Thus, other robots can recognize it
by comparing its current position with past ones. For this solution to work, it is
necessary that each robot always remains the closest one to all the positions it has
previously occupied. Formally speaking, we define the zone of movement Z oM 4

in a similar way as Z oM 3 except that the diameter is this time equal to di (τ)/6 (vs.
di (τ)/3). We now show that Z oM 4 provides the required properties. Let ri and
r j be an arbitrary pair of robots and Let di j denotes the distance between their
initial positions. It can easily shown, using the same arguments as the proof of
Lemma 6.4.3, that:

1. Neither of the two robots moves away from its initial position by a distance
greater than di j /4. This implies that each robot remains always at a distance
strictly smaller than di j /2 from all the positions it has previously held.

2. The distance between ri (resp. r j) and all the positions held by r j (ri) is
strictly greater than di j /2.

Hence, ri can never be closer than r j to a position that was occupied by r j , and vice
versa. This implies that it is always possible to recognize a robot by associating it
with the position which is closest to it in some previously observed configuration.

114

6.5 Applications

In this section we present two possible application of our RoboCast scheme,
namely the gathering and stygmergy problems.

6.5.1 Asynchronous Deterministic 2-Gathering

Given a set of n robots with arbitrary initial locations and no agreement on a global
coordinate system, n-Gathering requires that all robots eventually reach the same
unknown beforehand location. n-Gathering was already solved when n > 2 in
both ATOM [34] and NTOM [15] oblivious models. The problem is impossible to solve
for n = 2 even in ATOM, except if robots are endowed with persistent memory [34].
In this section we present an algorithm that uses our RoboCast primitive to solve
2-Gathering in the non-oblivious NTOM model.

A first "naive" solution is for each robot to robocast its abscissa and ordinate
axes and to meet the other robot at the midpoint m of their initial positions. Robo-
Casting the two axes is done using our Line RoboCast function described above in
conjunction with the Z oM 3−based collision avoidance scheme.

A second possible solution is to refine Algorithm ψ f −poi nt (2) of [34, 35] by us-
ing our Line RoboCast function to "send" lines instead of the one used by the au-
thors. The idea of this algorithm is that each robot that is activated for the first
time translates and rotates its coordinate system such that the other robot is on
its positive y-axis, and then it robocasts its (new) x-axis to the other robot using
our Line RoboCast function. In [34], the authors give a method that allows each
robot to compute the initial position of one’s peer by comparing their two robocast
x-axes defined above. Then each robot moves toward the midpoint of their ini-
tial positions. Our Line RoboCast routine combined with the above idea achieves
gathering in asynchronous systems within a bounded (vs. finite in [34]) number
of movements of robots and using only two (vs. four) variables in their persistent
memory.

Theorem 6.5.1. There is an algorithm for solving deterministic gathering for two

robots in non-oblivious asynchronous NTOM networks.

6.5.2 Asynchronous Stigmergy

Stigmergy [22] is the ability of a group of robots that communicate only through vi-
sion to exchange binary information. Stigmergy comes to encode bits in the move-
ments of robots. Solving this problem becomes trivial when using our RoboCast
primitive. First, robots exchange their local coordinate system as explained in Sec-
tion 6.2. Then, each robot that has a binary packet to transmit robocasts a line to

115

its peers whose angle with respect to its abscissa encodes the binary information.
Theoretically, as the precision of visual sensors is assumed to be infinite, robots are
able to observe the exact angle of this transmitted line, hence the size of exchanged
messages may be infinite also. However, in a more realistic environment in which
sensor accuracy and calculations have a margin of error, it is wiser to discretize
the measuring space. For this, we divide the space around the robot in several
sectors such that all the points located in the same sector encode the same binary
information (to tolerate errors of coding). For instance, to send binary packets of 8
bits, each sector should have an angle equal to u = 360◦/28. Hence, when a robot
moves through a line whose angle with respect to the abscissa is equal to α, the
corresponding binary information is equal to ⌊α/n⌋. Thus, our solution works in
asynchronous networks, uses a bounded number of movements and also allows
robots to send binary packets and not only single bits as in [22].

116

C
H

A
P

T
E

R

7
CONCLUSION

Figure 7.1: Axial Symmetric Configuration

117

This chapter summarizes our contributions and presents some directions for
future research.

In this thesis, we studied several problems in distributed robot networks. The
research for an effective protocol for a given problem in robot networks often
translates into the quest for a good spacial invariant that allows the design of sim-
ple and “natural” algorithms. The most famous example is the Weber point which,
when computed, provides a simple solution to the gathering problem : move to-
wards the Weber point of the current configuration. However, the Weber point is
known to be impossible to solve for general configurations, and algorithms that
compute Weber points are known for only few specific configurations. We pro-
posed in this thesis an algorithm that computes the Weber point for a large class
of configurations that exhibit some kind of rotational symmetry around a point.
Our method exploits this symmetry to find the Weber point.

We are currently investigating whether it is possible to use similar techniques
for configurations that are axial (but not rotational) symmetric. Let us illustrate
this with the configuration P of Figure 7.1 that is symmetric with respect to the axis
ψ. Since the configuration is not linear, its Weber point WP(P) is unique, hence it
lies necessarily on the line ψ. That is,

W P (P) = argmin
x∈ψ

∑

p∈{A,B ,C } |x, p|

= argmin
x∈R

f (x) =
∑

p∈{A,B ,C }

√

(x −xp)2 + y2
p

Therefore, WP(P) is the solution of the equation

0 = f ′(x) =
∑

p∈{A,B ,C }

x −xp
√

(x −xp)2 + y2
p

While this equation can be solved numerically, we could not find a general
formula for x.

Using our Weber point computation primitive, we designed a deterministic al-
gorithm that achieves gathering even if an arbitrary number of robots crash. Our
protocol assumes that robots share a common notion of handedness. It works
roughly as follows. If the configuration is assymetric, robots elect a robot as leader
and its location is used as the gathering point. Otherwise, if the configuration ex-
hibits some symmetry, robots move towards the Weber point which we know how
to compute in this case. The problem rises when the configuration is axial sym-
metric. In this case, we can neither elect a leader nor know how to compute the
Weber point. Adding the assumption of the common notion of clockwise direction
resolves this difficulty by allowing pairs of robots that are symmetric with respect

118

to the axis to distinguish between themselves. For example, in Figure 7.1, robot A

can be distinguished from D using the common notion of clockwise orientation:
A is the clockwise neighbor of D in the convex hull of P . It would be interesting
to investigate whether it is possible to solve the problem while removing this as-
sumption of common chirality, maybe by finding a way to compute Weber points
for axial symmetric configurations.

Then, we studied the convergence problem in uni-dimensional systems in
which robots may incur byzantine failures. In this context, we proved several nec-
essary and sufficient conditions for the problem to be solvable in terms of the syn-
chrony of the model and its resilience. An avenue for future research is to general-
ize these results for multi-dimensional robot networks.

Finally, we presentedRoboCast, an all-to-all communication primitive for robot
networks, that can be implemented in fully asynchronous and non-atomic net-
works if robots are endowed with memory. Our scheme has the additional prop-
erties of being motion, memory, and computation efficient. For this purpose, we
presented a collision avoidance for non-atomic networks that can be used for pro-
tocols in which robots remain in the vicinity of their initial positions during the
whole protocol execution. A collision-avoidance scheme that could be used with
all classes of protocols in non-atomic networks is a challenging issue. Using the
RoboCastprimitive, a swarm of failure-free robots can simulate any algorithm that
works in anonymous synchronous message passing systems. The question is still
open if we can obtain such a result with faulty (crash, byzantine) robots.

119

BIBLIOGRAPHY

[1] N. Agmon and D. Peleg. Fault-tolerant gathering algorithms for autonomous
mobile robots. SIAM Journal on Computing, 36(1):56–82, 2006.

[2] L. Anderegg, M. Cieliebak, and G. Prencipe. The weber point can be found in
linear time for points in biangular configuration. Technical Report TR-03-01,
Department of Informatics, University of Pisa, 2003.

[3] L. Anderegg, M. Cieliebak, and G. Prencipe. Efficient algorithms for detect-
ing regular point configurations. Theoretical Computer Science, pages 23–35,
2005.

[4] H. Ando, Y. Oasa, I. Suzuki, and M. Yamashita. Distributed memoryless point
convergence algorithm for mobile robots with limited visibility. Robotics and

Automation, IEEE Transactions on, 15(5):818–828, 1999.

[5] Alberto Apostolico, Martin Farach, and Costas S Iliopoulos. Optimal super-
primitivity testing for strings. Information Processing Letters, 39(1):17–20,
1991.

[6] C. Bajaj. The algebraic degree of geometric optimization problems. Discrete

& Computational Geometry, 3(1):177–191, 1988.

[7] Z. Bouzid, S. Das, and S. Tixeuil. Gathering of mobile robots tolerating mul-
tiple crash faults. In ICDCS, 2013.

[8] Z. Bouzid, S. Dolev, M. Potop-Butucaru, and S. Tixeuil. Robocast: Asyn-
chronous communication in robot networks. Principles of Distributed Sys-

tems, pages 16–31, 2010.

[9] Z. Bouzid, M. Gradinariu Potop-Butucaru, and S. Tixeuil. Byzantine conver-
gence in robot networks: The price of asynchrony. Principles of Distributed

Systems, pages 54–70, 2009.

121

[10] Z. Bouzid, M. Gradinariu Potop-Butucaru, and S. Tixeuil. Byzantine-resilient
convergence in oblivious robot networks. In ICDCN, pages 275–280, 2009.

[11] Z. Bouzid, M. Gradinariu Potop-Butucaru, and S. Tixeuil. Optimal byzantine
resilient convergence in asynchronous robots networks. In SSS, pages 165–
179, 2009.

[12] Z. Bouzid, M. Gradinariu Potop-Butucaru, and S. Tixeuil. Optimal byzantine-
resilient convergence in uni-dimensional robot networks. Theor. Comput.

Sci., 411(34-36), 2010.

[13] Z. Bouzid and A. Lamani. Robot networks with homonyms: the case of pat-
terns formation. Stabilization, Safety, and Security of Distributed Systems,
pages 92–107, 2011.

[14] R. Chandrasekaran and A. Tamir. Algebraic optimization: the fermat-weber
location problem. Mathematical Programming, 46(1):219–224, 1990.

[15] M. Cieliebak, P. Flocchini, G. Prencipe, and N. Santoro. Solving the robots
gathering problem. Automata, Languages and Programming, pages 192–192,
2003.

[16] R. Cohen and D. Peleg. Robot convergence via center-of-gravity algorithms.
Proc. of the 11th Int. Colloquium on Structural Information and Communica-

tion Complexity, pages 79–88, 2004.

[17] R. Cohen and D. Peleg. Convergence properties of the gravitational algorithm
in asynchronous robot systems. SIAM Journal on Computing, 34(6):1516–
1528, 2005.

[18] R. Cohen and D. Peleg. Convergence of autonomous mobile robots with
inaccurate sensors and movements. In B. Durand and W. Thomas, edi-
tors, 23rd Annual Symposium on Theoretical Aspects of Computer Science

(STACS’06), volume 3884 of LNCS, pages 549–560, Marseille, France, Febru-
ary 2006. Springer.

[19] J. Czyzowicz, L. Gasieniec, and A. Pelc. Gathering few fat mobile robots in the
plane. Theoretical Computer Science, 410(6):481–499, 2009.

[20] S. Das, P. Flocchini, N. Santoro, and M. Yamashita. On the computational
power of oblivious robots: forming a series of geometric patterns. In PODC,
pages 267–276. ACM, 2010.

122

[21] X. Defago, M. Gradinariu, S. Messika, and P.R. Parvedy. Fault-tolerant and
self-stabilizing mobile robots gathering. DISC06, the 20th International Con-

ference on Distributed Computing. LNCS, 3274:46–60, 2006.

[22] Y. Dieudonné, S. Dolev, F. Petit, and M. Segal. Deaf, dumb, and chatting asyn-
chronous robots. In OPODIS, pages 71–85, 2009.

[23] Y. Dieudonné and F. Petit. Self-stabilizing deterministic gathering. Algorith-

mic Aspects of Wireless Sensor Networks, pages 230–241, 2009.

[24] D. Dolev, N.A. Lynch, S.S. Pinter, E.W. Stark, and W.E. Weihl. Reaching ap-
proximate agreement in the presence of faults. Journal of the ACM (JACM),
33(3):499–516, 1986.

[25] P. Flocchini, D. Ilcinkas, A. Pelc, and N. Santoro. Remembering without mem-
ory: Tree exploration by asynchronous oblivious robots. Theoretical Com-

puter Science, 411(14-15):1583–1598, 2010.

[26] P. Flocchini, G. Prencipe, and N. Santoro. Distributed computing by oblivious
mobile robots. Synthesis Lectures on Distributed Computing Theory, 3(2):1–
185, 2012.

[27] P. Flocchini, G. Prencipe, N. Santoro, and P. Widmayer. Gathering of asyn-
chronous mobile robots with limited visibility. Theoretical Computer Science,
337:147–168, 2005.

[28] Taisuke Izumi, Samia Souissi, Yoshiaki Katayama, Nobuhiro Inuzuka, Xavier
Défago, Koichi Wada, and Masafumi Yamashita. The gathering problem for
two oblivious robots with unreliable compasses. SIAM J. Comput., 41(1):26–
46, 2012.

[29] B. Katreniak. Biangular circle formation by asynchronous mobile robots.
Structural Information and Communication Complexity, pages 185–199,
2005.

[30] B. Katreniak. Convergence with limited visibility by asynchronous mobile
robots. Structural Information and Communication Complexity, pages 125–
137, 2011.

[31] David G Kirkpatrick and R. Seidel. The ultimate planar convex hull algorithm?
SIAM journal on computing, 15(1):287–299, 1986.

123

[32] G. Prencipe. On the feasibility of gathering by autonomous mobile robots. In
A. Pelc and M. Raynal, editors, Proc. Structural Information and Communica-

tion Complexity, 12th Intl Coll., SIROCCO 2005, volume 3499 of LNCS, pages
246–261, Mont Saint-Michel, France, May 2005. Springer.

[33] Giuseppe Prencipe. Instantaneous actions vs. full asynchronicity : Control-
ling and coordinating a set of autonomous mobile robots. In ICTCS, pages
154–171, 2001.

[34] I. Suzuki and M. Yamashita. Distributed anonymous mobile robots: For-
mation of geometric patterns. SIAM Journal of Computing, 28(4):1347–1363,
1999.

[35] I. Suzuki and M. Yamashita. Erratum: Distributed anonymous mobile robots:
Formation of geometric patterns. SIAM J. of Computing, 36(1):279–280, 2006.

124

Zohir BOUZID

Modèles et Algorithmes pour
les Systèmes Émergents

Résumé

Les réseaux de robots autonomes sont des entités mobiles qui communiquent uniquement à

travers leurs mouvements et l'observation de leurs positions respectives. Ils sont anonymes,

sans mémoire et sans système de coordonnées global, ni une notion commune de la

distance. Nous nous concentrons sur l'étude algorithmique des problèmes de rassemblement

et de convergence des robots quand ils sont sujets à des pannes. Notre première contribution

est de nature géométrique. Nous fournissons un protocole pour calculer le point Weber d'une

grande classe de configurations qui ont une symétrie rotationnelle. Se basant sur cette cette

primitive, nous présentons un algorithme qui résout le problème du rassemblement en

présence de n'importe quel nombre de pannes franches. Ensuite, nous abordons le problème

de convergence quand les robots peuvent subir des pannes byzantines qui sont plus difficiles

à traiter que les pannes franches. Nous fournissons plusieurs bornes optimales qui relient le

degré de synchronie du système à sa résilience. Enfin, nous étudions les robots qui sont

dotées de mémoire et nous montrons que ce modèle est plus fort que le modèle de passage

de messages.

Mots clés : réseaux de robots; point Weber; tolérance aux pannes; systèmes répartis;

rassemblement; byzantins

Résumé en anglais

Networks of autonomous robots are mobile entities that communicate only through their

movements and the observation of their respective positions. They are anonymous, without

memory and without a global coordinate system nor a common notion of distance. We focus

on the algorithmic study of the problems of gathering and convergence of robots when some

of them may be subject to failures. Our first contribution is of geometric nature. We provide

a protocol to compute the Weber point of a large class of rotational symmetric

configurations. Based on this primitive, we present an algorithm that solves the gathering

problem in presence of any number of crash failures. Then, we address the convergence

problem when robots may incur byzantine failures which are harder to handle than crash

failures. We provide several tight bounds relating the degree of synchronicity of the system

to its resiliency. Finally, we study robots that are endowed with memory and we show that

this model is stronger than the message passing model.

Keywords : robot networks; Weber point ; fault tolerance ; distributed systems ; gathering ;

byzantine

	Contents
	Introduction
	Research Contributions

	Background
	Model
	Studied Problems
	Weber Points
	Gathering and Convergence
	The RoboCast Problem

	Notations

	Weber Points
	Symmetries in Robot Configurations
	Symmetricity
	Regularity
	Properties of Weber Points

	Computation of Weber Points in Regular Configurations
	Preliminaries
	Detection of Even Regularity
	Detection of Odd Regularity

	Computation of Weber Points for Quasi-Regular Configurations

	Wait-Free Crash-Resilient Gathering
	Configurations
	The Algorithm
	Proof of Correctness

	Byzantine Convergence
	Preliminaries
	Cautious Algorithms
	Equivalence of Configurations
	Invariants

	Necessity of Strong Multiplicity Detection
	Lower Bound on the Number of Faulty Robots in the ATOM [FS] Model
	Lower Bound on the Number of Faulty Robots in the ATOM [] Model
	Lower Bound on the Number of Faulty Robots in the ATOM [AS] model
	Necessary and Sufficient Conditions for Deterministic Convergence
	Shrinking algorithms
	Cautious algorithms

	Deterministic Convergence in ATOM [FS] Networks
	Algorithm 5 is Cautious
	Algorithm 5 is Shrinking

	Deterministic Convergence in NTOM [] Networks
	Algorithm 6 is Cautious
	Algorithm 6 is Shrinking

	Deterministic Convergence in NTOM [AS] Networks
	Algorithm 7 is Cautious
	Algorithm 7 is Shrinking

	RoboCast
	Introduction
	RoboCasting the Local Coordinate System: Two Robots Networks
	Line RoboCast
	Composing RoboCast
	RoboCast of the Local Coordinate System

	RoboCasting the Local Coordinate System: n-Robots Networks
	Avoinding Collisions
	Applications
	Asynchronous Deterministic 2-Gathering
	Asynchronous Stigmergy

	Conclusion
	Bibliography

